In [1]:
%matplotlib notebook
# %matplotlib inline
%config InlineBackend.figure_format = 'retina'
from matplotlib import pylab as plt
import sys
import glob, os
# import glob
# metob.load_lcms_files(glob.glob('/project/projectdirs/metatlas/data_for_metatlas_2/20150504_LPSilva_Actino_HILIC_POS_51isolates/*.*’))
curr_ld_lib_path = ''
os.environ['LD_LIBRARY_PATH'] = curr_ld_lib_path + ':/project/projectdirs/openmsi/jupyterhub_libs/boost_1_55_0/lib' + ':/project/projectdirs/openmsi/jupyterhub_libs/lib'
import sys
# sys.path.remove('/anaconda/lib/python2.7/site-packages')
sys.path.append('/global/project/projectdirs/openmsi/jupyterhub_libs/anaconda/lib/python2.7/site-packages')
sys.path.insert(0,'/project/projectdirs/openmsi/projects/meta-iq/pactolus/pactolus' )
from generate_frag_dag import *
import score_frag_dag
sys.path.insert(0,'/global/project/projectdirs/metatlas/anaconda/lib/python2.7/site-packages' )
from metatlas import metatlas_objects as metob
from metatlas import h5_query as h5q
from metatlas import mzml_to_hdf
import tables
import pickle
In [2]:
pos_mode_neutralizations = [-1.00727646677, -(1.00727646677+1.00782504), +5.4857990946e-4,]
neg_mode_neutralizations = [-el for el in pos_mode_neutralizations]
# make lookup table
path_to_trees = '/project/projectdirs/openmsi/projects/pactolus_trees/'
all_my_h5_files = glob.glob('/project/projectdirs/openmsi/projects/pactolus_trees/*_hdf5_5_*.h5')
my_tree_filename = 'metacyc_max_depth_5'
if not os.path.isfile(os.path.join(path_to_trees, my_tree_filename + '.npy')):
score_frag_dag.make_file_lookup_table_by_MS1_mass(all_my_h5_files,
path=path_to_trees,
save_result='metacyc_max_depth_5')
maxdepth_5_table = os.path.join(path_to_trees, my_tree_filename + '.npy')
params = {'file_lookup_table': maxdepth_5_table,
'ms1_mass_tol': 0.02,
'ms2_mass_tol': 0.01,
'neutralizations': pos_mode_neutralizations,
'max_depth': 5,
}
In [ ]:
with open('Actino_C18_Pos.pickle', 'rb') as handle:
MSMS_data = pickle.load(handle)
In [3]:
with open('Actino_C18_Pos_Scores_Sorted.pickle', 'rb') as handle:
score_results = pickle.load(handle)
In [4]:
foo = []
for s in score_results:
for i in s:
foo.append(i)
foo = np.array(foo)
print foo.shape
In [5]:
s = score_frag_dag.make_pactolus_hit_table(foo,maxdepth_5_table,'/global/homes/b/bpb/notebooks/meta-iq_old/midas_lbl/MetaCyc.mdb')
In [6]:
s[0]
Out[6]:
In [ ]: