In [1]:
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
In [2]:
input_size = 1
output_size = 1
num_epochs = 60
learning_rate = 0.001
In [3]:
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
In [4]:
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
In [7]:
x_train
Out[7]:
In [8]:
y_train
Out[8]:
In [9]:
%matplotlib inline
plt.plot(x_train, y_train, 'ro')
Out[9]:
In [10]:
class LinearRegression(nn.Module):
def __init__(self, input_size, output_size):
super(LinearRegression, self).__init__()
self.linear = nn.Linear(input_size, output_size)
def forward(self, x):
out = self.linear(x)
return out
In [11]:
model = LinearRegression(input_size, output_size)
In [12]:
model
Out[12]:
In [13]:
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
In [16]:
for epoch in range(num_epochs):
inputs = Variable(torch.from_numpy(x_train))
targets = Variable(torch.from_numpy(y_train))
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
if (epoch + 1) % 5 == 0:
print('Epoch [%d/%d], Loss: %.4f' % (epoch + 1, num_epochs, loss.data[0]))
In [23]:
predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
In [29]:
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()
In [30]:
torch.save(model.state_dict(), 'model.pkl')
In [31]:
ls
In [ ]: