In [2]:
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
In [4]:
input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001
In [5]:
train_dataset = dsets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
In [7]:
train_dataset
Out[7]:
In [8]:
test_dataset
Out[8]:
In [9]:
len(train_dataset)
Out[9]:
In [10]:
dir(train_dataset)
Out[10]:
In [20]:
train_dataset.train_data[0].size()
Out[20]:
In [21]:
train_dataset.train_labels[0]
Out[21]:
In [22]:
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
In [23]:
class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(Net, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
In [24]:
net = Net(input_size, hidden_size, num_classes)
In [25]:
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
In [26]:
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, 28 * 28))
labels = Variable(labels)
optimizer.zero_grad()
outputs = net(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
% (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, loss.data[0]))
In [27]:
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28 * 28))
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
In [28]:
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct /total))
In [29]:
torch.save(net.state_dict(), 'model.pkl')
In [30]:
net.state_dict().keys()
Out[30]:
In [33]:
net.state_dict()['fc1.weight'].size()
Out[33]:
In [ ]: