パーセプトロン


In [1]:
from sklearn import datasets
import numpy as np

In [3]:
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
print('Class labels:', np.unique(y))


Class labels: [0 1 2]

In [6]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)

In [8]:
print('Label count in y:', np.bincount(y))
print('Labels counts in y_train:', np.bincount(y_train))
print('Labels counts in y_test:', np.bincount(y_test))


Label count in y: [50 50 50]
Labels counts in y_train: [35 35 35]
Labels counts in y_test: [15 15 15]

In [10]:
print(X_train.shape, X_test.shape)
print(y_train.shape, y_test.shape)


(105, 2) (45, 2)
(105,) (45,)

In [13]:
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

In [36]:
from sklearn.linear_model import Perceptron
ppn = Perceptron(max_iter=40, eta0=0.1, random_state=1)
ppn.fit(X_train_std, y_train)


Out[36]:
Perceptron(alpha=0.0001, class_weight=None, eta0=0.1, fit_intercept=True,
      max_iter=40, n_iter=None, n_jobs=1, penalty=None, random_state=1,
      shuffle=True, tol=None, verbose=0, warm_start=False)

In [37]:
print(ppn.n_iter_)


40

In [38]:
y_pred = ppn.predict(X_test_std)
print('Misclassified samples: %d' % (y_test != y_pred).sum())


Misclassified samples: 3

In [39]:
from sklearn.metrics import accuracy_score
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))


Accuracy: 0.93

In [40]:
print('Accuracy: %.2f' % ppn.score(X_test_std, y_test))


Accuracy: 0.93

In [41]:
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
    # マーカーとカラーマップの準備
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    
    # 決定領域のプロット
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                           np.arange(x2_min, x2_max, resolution))

    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
    
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())
    
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0],
                    y=X[y == cl, 1],
                    alpha=0.8,
                    c=colors[idx],
                    marker=markers[idx],
                    label=cl,
                    edgecolor='black')
    
    # テストサンプルを目立たせる
    if test_idx:
        X_test, y_test = X[test_idx, :], y[test_idx]
        plt.scatter(X_test[:, 0], X_test[:, 1],
                    c='',
                    edgecolor='black',
                    alpha=1.0,
                    linewidth=1,
                    marker='o',
                    s=100,
                    label='test set')

In [42]:
X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined_std, y=y_combined, classifier=ppn, test_idx=range(105, 150))
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()


ロジスティック回帰


In [45]:
def logit(p):
    return np.log(p / (1 - p))

In [57]:
x = np.linspace(0.001, 0.999)
y = logit(x)

In [58]:
plt.plot(x, y)
plt.show()



In [67]:
import matplotlib.pyplot as plt
import numpy as np

def sigmoid(z):
    return 1.0 / (1.0 + np.exp(-z))

z = np.arange(-7, 7, 0.1)
phi_z = sigmoid(z)
plt.plot(z, phi_z)
plt.axvline(0.0, color='k')
plt.ylim(-0.1, 1.1)
plt.xlabel('z')
plt.ylabel('$\phi (z)$')
plt.yticks([0.0, 0.5, 1.0])
ax = plt.gca()
ax.yaxis.grid(True)
plt.tight_layout()
plt.show()



In [74]:
def cost_1(z):
    return - np.log(sigmoid(z))

def cost_0(z):
    return - np.log(1 - sigmoid(z))

z = np.arange(-10, 10, 0.1)
phi_z = sigmoid(z)  # [0, 1]

c1 = [cost_1(x) for x in z]
plt.plot(phi_z, c1, label='J(w) if y=1')

c0 = [cost_0(x) for x in z]
plt.plot(phi_z, c0, linestyle='--', label='J(w) if y=0')

plt.ylim(0.0, 5.1)
plt.xlim(0, 1)

plt.xlabel('$\phi$(z)')
plt.ylabel('J(w)')
plt.legend(loc='upper center')
plt.tight_layout()
plt.show()



In [75]:
class LogisticRegressionGD(object):
    
    def __init__(self, eta=0.01, n_iter=50, random_state=1):
        self.eta = eta
        self.n_iter = n_iter
        self.random_state = random_state
        
    def fit(self, X, y):
        rgen = np.random.RandomState(self.random_state)
        self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])
        self.cost_ = []
        
        for _ in range(self.n_iter):
            net_input = self.net_input(X)
            output = self.activation(net_input)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
            cost = -y.dot(np.log(output)) - ((1 - y).dot(np.log(1 - output)))
            self.cost_.append(cost)
        return self
    
    def net_input(self, X):
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, z):
        return 1.0 / (1.0 + np.exp(-np.clip(z, -250, 250)))
    
    def predict(self, X):
        return np.where(self.net_input(X) >= 0.0, 1, 0)

In [82]:
X_train_01_subset = X_train[(y_train == 0) | (y_train == 1)]
y_train_01_subset = y_train[(y_train == 0) | (y_train == 1)]
lrgd = LogisticRegressionGD(eta=0.05, n_iter=1000, random_state=1)
lrgd.fit(X_train_01_subset, y_train_01_subset)

plot_decision_regions(X=X_train_01_subset, y=y_train_01_subset, classifier=lrgd)
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()



In [84]:
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=100.0, random_state=1)
lr.fit(X_train_std, y_train)

plot_decision_regions(X_combined_std, y_combined, classifier=lr, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()



In [91]:
lr.predict_proba(X_test_std[:3, :]).argmax(axis=1)


Out[91]:
array([2, 0, 0])

In [92]:
lr.predict(X_test_std[:3, :])


Out[92]:
array([2, 0, 0])

In [94]:
X_test_std[0, :].shape


Out[94]:
(2,)

In [97]:
X_test_std[0, :].reshape(1, -1).shape


Out[97]:
(1, 2)

In [98]:
lr.predict(X_test_std[0, :].reshape(1, -1))


Out[98]:
array([2])

正則化


In [99]:
weights, params = [], []
for c in np.arange(-5, 5):
    lr = LogisticRegression(C=10.0 ** c, random_state=1)
    lr.fit(X_train_std, y_train)
    weights.append(lr.coef_[1])
    params.append(10.0 ** c)

weights = np.array(weights)

# 横軸に逆正則化パラメータ C、縦軸に重み係数をプロット
plt.plot(params, weights[:, 0], label='petal length')
plt.plot(params, weights[:, 1], linestyle='--', label='petal width')
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.legend(loc='upper left')
plt.xscale('log')
plt.show()


SVM


In [100]:
from sklearn.svm import SVC
svm = SVC(kernel='linear', C=1.0, random_state=1)
svm.fit(X_train_std, y_train)

plot_decision_regions(X_combined_std, y_combined, classifier=svm, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()



In [101]:
from sklearn.linear_model import SGDClassifier

In [104]:
ppn = SGDClassifier(loss='perceptron')
ppn


Out[104]:
SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
       eta0=0.0, fit_intercept=True, l1_ratio=0.15,
       learning_rate='optimal', loss='perceptron', max_iter=None,
       n_iter=None, n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
       shuffle=True, tol=None, verbose=0, warm_start=False)

In [106]:
lr = SGDClassifier(loss='log')
print(lr)


SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
       eta0=0.0, fit_intercept=True, l1_ratio=0.15,
       learning_rate='optimal', loss='log', max_iter=None, n_iter=None,
       n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
       shuffle=True, tol=None, verbose=0, warm_start=False)

In [107]:
svm = SGDClassifier(loss='hinge')
print(svm)


SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
       eta0=0.0, fit_intercept=True, l1_ratio=0.15,
       learning_rate='optimal', loss='hinge', max_iter=None, n_iter=None,
       n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
       shuffle=True, tol=None, verbose=0, warm_start=False)

カーネルSVM


In [112]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1)
X_xor = np.random.randn(200, 2)
y_xor = np.logical_xor(X_xor[:, 0] > 0, X_xor[:, 1] > 0)
y_xor = np.where(y_xor, 1, -1)

In [120]:
plt.scatter(X_xor[y_xor==1, 0], X_xor[y_xor==1, 1], c='b', marker='x', label='1')
plt.scatter(X_xor[y_xor==-1, 0], X_xor[y_xor==1, 1], c='r', marker='s', label='-1')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend(loc='best')
plt.tight_layout()
plt.show()



In [122]:
svm = SVC(kernel='rbf', random_state=1, gamma=0.10, C=10.0)
svm.fit(X_xor, y_xor)
plot_decision_regions(X_xor, y_xor, classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()



In [131]:
svm = SVC(kernel='rbf', random_state=1, gamma=0.2, C=1.0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined, classifier=svm, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()


決定木


In [136]:
import matplotlib.pyplot as plt
import numpy as np

def gini(p):
    return (p) * (1 - (p)) + (1 - p) * (1 - (1 - p))

def entropy(p):
    return - p * np.log2(p) - (1 - p) * np.log2((1 - p))

def error(p):
    return 1 - np.max([p, 1 - p])

x = np.arange(0.0, 1.0, 0.01)

ent = [entropy(p) if p != 0 else None for p in x]
sc_ent = [e * 0.5 if e else None for e in ent]
err = [error(i) for i in x]

fig = plt.figure()
ax = plt.subplot(111)
for i, lab, ls, c, in zip([ent, sc_ent, gini(x), err],
                          ['Entropy', 'Entropy (scaled)', 'Gini Impurity', 'Misclassification Error'],
                          ['-', '-', '--', '-.'],
                          ['black', 'lightgray', 'red', 'green', 'cyan']):
    line = ax.plot(x, i, label=lab, linestyle=ls, lw=2, color=c)

ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15),
          ncol=5, fancybox=True, shadow=False)
ax.axhline(y=0.5, linewidth=1, color='k', linestyle='--')
ax.axhline(y=1.0, linewidth=1, color='k', linestyle='--')
plt.ylim([0, 1.1])
plt.xlabel('p(i=1)')
plt.ylabel('Impurity Index')
plt.show()



In [157]:
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(criterion='gini', max_depth=4, random_state=1)
tree.fit(X_train, y_train)
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X_combined, y_combined, classifier=tree, test_idx=range(105, 150))
plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()



In [158]:
!pip install pydotplus


Requirement already satisfied: pydotplus in /Users/koichiro.mori/anaconda3/lib/python3.6/site-packages (2.0.2)
Requirement already satisfied: pyparsing>=2.0.1 in /Users/koichiro.mori/anaconda3/lib/python3.6/site-packages (from pydotplus) (2.2.0)

In [159]:
from pydotplus import graph_from_dot_data
from sklearn.tree import export_graphviz
dot_data = export_graphviz(tree,
                           filled=True,
                           rounded=True,
                           class_names=['Satosa', 'Versicolor', 'Virginica'],
                           feature_names=['petal length', 'petal width'],
                           out_file=None)
graph = graph_from_dot_data(dot_data)
graph.write_png('test.png')


Out[159]:
True

In [160]:
from IPython.display import Image
Image('test.png')


Out[160]:

ランダムフォレスト


In [165]:
from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier(criterion='gini',
                                n_estimators=25,
                                random_state=1,
                                n_jobs=2)
forest.fit(X_train, y_train)

X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X_combined, y_combined, classifier=forest, test_idx=range(105, 150))
plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()


K-近傍法


In [167]:
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5, p=2, metric='minkowski')
knn.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined, classifier=knn, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()