In [9]:
from keras.models import Sequential
from keras.layers import LSTM, Dense, Activation
from keras.optimizers import SGD

In [6]:
model = Sequential()
model.add(LSTM(5, input_shape=(2, 1)))
model.add(Dense(1))
model.add(Activation('sigmoid'))

In [7]:
model.compile(optimizer='sgd', loss='mse')

In [10]:
algorithm = SGD(lr=0.1, momentum=0.3)
model.compile(optimizer=algorithm, loss='mse')

In [11]:
model.compile(optimizer='sgd', loss='mean_squared_error', metrics=['accuracy'])

In [18]:
import numpy as np
data = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

In [19]:
data


Out[19]:
array([ 0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1. ])

In [20]:
# (1 sample, 10 time steps, 1 feature) のテンソルに変換
data = data.reshape((1, 10, 1))

In [21]:
data.shape


Out[21]:
(1, 10, 1)

In [22]:
data = np.array([
    [0.1, 1.0],
    [0.2, 0.9],
    [0.3, 0.8],
    [0.4, 0.7],
    [0.5, 0.6],
    [0.6, 0.5],
    [0.7, 0.4],
    [0.8, 0.3],
    [0.9, 0.2],
    [1.0, 0.1]
])

In [23]:
data.shape


Out[23]:
(10, 2)

In [24]:
# (1 sample, 10 timesteps, 2 features) のテンソルに変換
data = data.reshape(1, 10, 2)

In [25]:
data.shape


Out[25]:
(1, 10, 2)

In [ ]: