In [1]:
from keras.models import Sequential, model_from_json
from keras.layers import Dense
import numpy as np
import os
np.random.seed(7)
dataset = np.loadtxt('pima-indians-diabetes.data', delimiter=',')
X = dataset[:, 0:8]
Y = dataset[:, 8]
In [ ]:
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, Y, epochs=150, batch_size=10, verbose=0)
In [3]:
scores = model.evaluate(X, Y, verbose=0)
print('%s: %.2f%%' % (model.metrics_names[1], scores[1] * 100))
In [9]:
# serialize model to JSON
model_json = model.to_json()
with open('model.json', 'w') as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights('model.h5')
print('saved model to disk')
In [10]:
%ls
In [18]:
# load json and create model
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
In [19]:
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights('model.h5')
In [20]:
loaded_model.summary()
In [21]:
loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
scores = loaded_model.evaluate(X, Y, verbose=0)
print('%s: %.2f%%' % (loaded_model.metrics_names[1], scores[1] * 100))
In [ ]: