In [3]:
from pandas import DataFrame, concat
In [1]:
# create sequence
length = 10
sequence = [i / float(length) for i in range(length)]
In [10]:
df = DataFrame(sequence)
df = concat([df.shift(1), df], axis=1)
df.dropna(inplace=True)
values = df.values
X, y = values[:, 0], values[:, 1]
In [11]:
df
Out[11]:
In [12]:
X
Out[12]:
In [13]:
y
Out[13]:
In [18]:
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import mean_squared_error
def fit_model(X, y):
model = Sequential()
model.add(Dense(10, input_dim=1))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X, y, epochs=100, batch_size=len(X), verbose=0)
yhat = model.predict(X, verbose=0)
print(mean_squared_error(y, yhat[:, 0]))
In [23]:
import numpy as np
from tensorflow import set_random_seed
np.random.seed(1)
set_random_seed(2)
# repeat experiment
repeats = 10
for _ in range(repeats):
fit_model(X, y)
In [ ]: