60000 train samples
10000 test samples
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_10 (Dense) (None, 512) 401920
_________________________________________________________________
dropout_7 (Dropout) (None, 512) 0
_________________________________________________________________
dense_11 (Dense) (None, 512) 262656
_________________________________________________________________
dropout_8 (Dropout) (None, 512) 0
_________________________________________________________________
dense_12 (Dense) (None, 10) 5130
=================================================================
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0
_________________________________________________________________
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [==============================] - 8s - loss: 0.7039 - acc: 0.7822 - val_loss: 0.3642 - val_acc: 0.8867
Epoch 2/20
60000/60000 [==============================] - 6s - loss: 0.2873 - acc: 0.9137 - val_loss: 0.1910 - val_acc: 0.9412
Epoch 3/20
60000/60000 [==============================] - 7s - loss: 0.2050 - acc: 0.9381 - val_loss: 0.1394 - val_acc: 0.9581
Epoch 4/20
60000/60000 [==============================] - 7s - loss: 0.1621 - acc: 0.9504 - val_loss: 0.1207 - val_acc: 0.9643
Epoch 5/20
60000/60000 [==============================] - 7s - loss: 0.1293 - acc: 0.9607 - val_loss: 0.1089 - val_acc: 0.9666
Epoch 6/20
60000/60000 [==============================] - 8s - loss: 0.1080 - acc: 0.9667 - val_loss: 0.1329 - val_acc: 0.9567
Epoch 7/20
60000/60000 [==============================] - 8s - loss: 0.0884 - acc: 0.9727 - val_loss: 0.0913 - val_acc: 0.9711
Epoch 8/20
60000/60000 [==============================] - 9s - loss: 0.0770 - acc: 0.9754 - val_loss: 0.0827 - val_acc: 0.9737
Epoch 9/20
60000/60000 [==============================] - 7s - loss: 0.0654 - acc: 0.9799 - val_loss: 0.0760 - val_acc: 0.9749
Epoch 10/20
60000/60000 [==============================] - 8s - loss: 0.0584 - acc: 0.9817 - val_loss: 0.0643 - val_acc: 0.9804
Epoch 11/20
60000/60000 [==============================] - 8s - loss: 0.0485 - acc: 0.9844 - val_loss: 0.0616 - val_acc: 0.9812
Epoch 12/20
60000/60000 [==============================] - 8s - loss: 0.0441 - acc: 0.9860 - val_loss: 0.0639 - val_acc: 0.9805
Epoch 13/20
60000/60000 [==============================] - 8s - loss: 0.0383 - acc: 0.9877 - val_loss: 0.0637 - val_acc: 0.9795
Epoch 14/20
60000/60000 [==============================] - 8s - loss: 0.0336 - acc: 0.9890 - val_loss: 0.0609 - val_acc: 0.9813
Epoch 15/20
60000/60000 [==============================] - 7s - loss: 0.0282 - acc: 0.9911 - val_loss: 0.0612 - val_acc: 0.9817
Epoch 16/20
60000/60000 [==============================] - 8s - loss: 0.0242 - acc: 0.9922 - val_loss: 0.0788 - val_acc: 0.9771
Epoch 17/20
60000/60000 [==============================] - 6s - loss: 0.0238 - acc: 0.9927 - val_loss: 0.0583 - val_acc: 0.9838
Epoch 18/20
60000/60000 [==============================] - 7s - loss: 0.0236 - acc: 0.9925 - val_loss: 0.0612 - val_acc: 0.9828
Epoch 19/20
60000/60000 [==============================] - 8s - loss: 0.0183 - acc: 0.9942 - val_loss: 0.0676 - val_acc: 0.9813
Epoch 20/20
60000/60000 [==============================] - 8s - loss: 0.0163 - acc: 0.9946 - val_loss: 0.0734 - val_acc: 0.9790
Test loss: 0.0733699267333
Test accuracy: 0.979