In [26]:
import os
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import RMSprop
from keras.callbacks import LambdaCallback
batch_size = 128
num_classes = 10
epochs = 5
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32')
x_test = x_test.reshape(10000, 784).astype('float32')
x_train /= 255
x_test /= 255
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Dense(512, input_shape=(784, )))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
hist = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_split=0.1,
callbacks=None)
# Slackへ投稿するCallback
hostname = os.uname()[1]
print(hist.history['acc'])
print(hostname)
slack_command = 'curl -X POST -H \'Content-type: application/json\' --data \'{{"text":"Here is {}.\nepoch:{:03d}, loss:{:.3f}, val_loss:{:.3f}, acc:{:.3f}, val_acc:{:.3f}"}}\' https://hooks.slack.com/services/<own API key>'
slack_command = slack_command.format(
hostname,
hist.epoch[-1],
hist.history['loss'][-1], hist.history['val_loss'][-1],
hist.history['acc'][-1], hist.history['val_acc'][-1])
os.system(slack_command)
Out[26]:
In [ ]: