In [15]:
using MethylClust
using PyPlot
In [17]:
ff_file = "/Users/alex/Dropbox/meth_data/test1.tsv"#"/Users/alex/Dropbox/meth_data/allc_ff_15.tsv"
h1_file = "/Users/alex/Dropbox/meth_data/test2.tsv"#"/Users/alex/Dropbox/meth_data/allc_h1_15.tsv"
positions = find_common_positions(ff_file,h1_file;strand="-")
ff_p = est_prob_allc(ff_file, positions)
h1_p = est_prob_allc(h1_file, positions)
js_divergence(ff_p,h1_p)
Out[17]:
In [18]:
function draw_mixture(num_reads, read_len; proportion_ff=0.5)
I1,J1,V1 = draw_reads(ff_p, round(Int,num_reads*proportion_ff), read_len)
I2,J2,V2 = draw_reads(h1_p, round(Int,num_reads*(1-proportion_ff)), read_len)
return sparse([I1,I2+I1[end]],[J1,J2],[V1,V2])
end
Out[18]:
In [23]:
figure()
imshow(draw_mixture(100,30),cmap=ColorMap("bwr"),interpolation="none")
ylabel("reads"),xlabel("cytosine positions")
Out[23]:
In [ ]: