In [1]:
from ahh import pre
import pandas as pd
In [16]:
# make data up
dts = pd.date_range('2016-01-01', periods=18, freq='27D')
years = dts.year
months = dts.month
days = dts.day
data = list(range(len(dts)))
df = pd.DataFrame(data=dict(data=data, years=years, months=months, days=days))
df.to_csv('./example_data/timeseries.csv', index=False)
df
Out[16]:
In [17]:
# combine years, months, days into datetime index and clears the old date columns
df = pre.read_csv('./example_data/timeseries.csv', year='years', month='months', day='days', clear=True)
df
Out[17]:
In [20]:
# can also automatically set date string column to datetime
dts = pd.date_range('2016-01-01', periods=18, freq='27D')
data = list(range(len(dts)))
df = pd.DataFrame(data=dict(data=data, datetime=dts))
df.to_csv('./example_data/timeseries_dates.csv', index=False)
df
Out[20]:
In [21]:
df = pre.read_csv('./example_data/timeseries_dates.csv', time='datetime')
df
Out[21]:
In [ ]:
In [ ]: