Automatically created module for IPython interactive environment
Iteration 0, pseudo-likelihood = -28.84, time = 0.96s
Iteration 1, pseudo-likelihood = -25.92, time = 0.97s
Iteration 2, pseudo-likelihood = -24.82, time = 0.97s
Iteration 3, pseudo-likelihood = -23.71, time = 0.97s
Iteration 4, pseudo-likelihood = -23.03, time = 0.97s
Iteration 5, pseudo-likelihood = -22.44, time = 0.97s
Iteration 6, pseudo-likelihood = -21.91, time = 0.97s
Iteration 7, pseudo-likelihood = -21.66, time = 0.97s
Iteration 8, pseudo-likelihood = -21.39, time = 0.97s
Iteration 9, pseudo-likelihood = -21.07, time = 0.97s
Iteration 10, pseudo-likelihood = -20.85, time = 0.97s
Iteration 11, pseudo-likelihood = -20.74, time = 0.97s
Iteration 12, pseudo-likelihood = -20.57, time = 0.97s
Iteration 13, pseudo-likelihood = -20.44, time = 0.96s
Iteration 14, pseudo-likelihood = -20.29, time = 0.97s
Iteration 15, pseudo-likelihood = -20.20, time = 0.96s
Iteration 16, pseudo-likelihood = -19.98, time = 0.96s
Iteration 17, pseudo-likelihood = -19.75, time = 0.96s
Iteration 18, pseudo-likelihood = -19.78, time = 0.96s
Iteration 19, pseudo-likelihood = -19.67, time = 0.96s
Logistic regression using RBM features:
precision recall f1-score support
0 0.99 0.99 0.99 174
1 0.92 0.95 0.93 184
2 0.95 0.98 0.97 166
3 0.97 0.91 0.94 194
4 0.97 0.95 0.96 186
5 0.93 0.93 0.93 181
6 0.98 0.97 0.97 207
7 0.95 1.00 0.97 154
8 0.90 0.88 0.89 182
9 0.91 0.93 0.92 169
avg / total 0.95 0.95 0.95 1797
Logistic regression using raw pixel features:
precision recall f1-score support
0 0.85 0.94 0.89 174
1 0.57 0.55 0.56 184
2 0.72 0.85 0.78 166
3 0.76 0.74 0.75 194
4 0.85 0.82 0.84 186
5 0.74 0.75 0.75 181
6 0.93 0.88 0.91 207
7 0.86 0.90 0.88 154
8 0.68 0.55 0.61 182
9 0.71 0.74 0.72 169
avg / total 0.77 0.77 0.77 1797