In [1]:
import pandas as pd
import numpy as np
%matplotlib inline
In [2]:
pwd
Out[2]:
In [3]:
cd /home/topo/repos/ghub/pydata-book
In [4]:
pd.read_csv('ch06/ex2.csv', header=None)
Out[4]:
In [5]:
pd.read_csv('ch06/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
Out[5]:
In [6]:
names = ['a', 'b', 'c', 'd', 'message']
In [7]:
pd.read_csv('ch06/ex2.csv', names=names, index_col='message')
Out[7]:
In [8]:
pd.read_csv('ch06/ex2.csv', names=names, index_col='a')
Out[8]:
In [9]:
!cat ch06/csv_mindex.csv
In [10]:
parsed = pd.read_csv('ch06/csv_mindex.csv', index_col=['key1', 'key2'])
In [11]:
parsed
Out[11]:
In [12]:
list(open('ch06/ex3.txt'))
Out[12]:
In [13]:
pd.read_table('ch06/ex3.txt', sep='\s+')
Out[13]:
In [14]:
!cat ch06/ex4.csv
In [15]:
pd.read_table('ch06/ex4.csv', sep=',')
Out[15]:
In [16]:
pd.read_table('ch06/ex4.csv', sep=',', skiprows=[0,2,3])
Out[16]:
In [17]:
!cat ch06/ex5.csv
In [20]:
res = pd.read_csv('ch06/ex5.csv')
res
Out[20]:
In [21]:
pd.isnull(res)
Out[21]:
In [25]:
result = pd.read_csv('ch06/ex5.csv', na_values=['NA'])
result
Out[25]:
In [26]:
sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
sentinels
Out[26]:
In [27]:
#custom values for NA treatment
pd.read_csv('ch06/ex5.csv', na_values=sentinels)
Out[27]:
In [28]:
result = pd.read_csv('ch06/ex6.csv')
In [30]:
result.head()
Out[30]:
In [32]:
pd.read_csv('ch06/ex6.csv', nrows=6)
Out[32]:
In [33]:
data = pd.read_csv('ch06/ex5.csv')
data
Out[33]:
In [35]:
#data.to_csv(sys.stdout, sep='|')
In [36]:
!cat ch06/ex7.csv
In [37]:
import csv
f = open('ch06/ex7.csv')
reader = csv.reader(f)
In [38]:
for line in reader:
print line
In [39]:
lines = list(csv.reader(open('ch06/ex7.csv')))
In [41]:
header, values = lines[0], lines[1:]
In [45]:
data_dict = {h:v for h,v in zip(header, zip(*values))}
data_dict
Out[45]:
In [44]:
{h:v for h,v in zip(header, zip(values))}
Out[44]:
In [46]:
In [944]: import requests
In [945]: url = 'http://search.twitter.com/search.json?q=python%20pandas'
In [946]: resp = requests.get(url)
In [47]:
resp
Out[47]:
In [49]:
import json
json.loads(resp.text)
Out[49]:
In [ ]: