In [1]:
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
In [14]:
dt = np.random.randn(10)
print dt
In [ ]:
In [20]:
t = np.array(xrange(6)).reshape(2,3)
print t
In [21]:
t * 5
Out[21]:
In [22]:
t + t
Out[22]:
In [23]:
2*t + 5
Out[23]:
In [25]:
t.dtype
Out[25]:
In [26]:
arr2 = np.array(t)
In [27]:
arr2
Out[27]:
In [29]:
arr2.ndim
Out[29]:
In [33]:
t2 = np.array(xrange(1,19))
In [34]:
t2.shape
Out[34]:
In [37]:
t3 = t2.reshape(3,3,2)
print t3
In [38]:
t3.ndim
Out[38]:
In [39]:
np.zeros(10)
Out[39]:
In [40]:
np.ones(10)
Out[40]:
In [41]:
np.arange(15)
Out[41]:
In [42]:
arr = np.array(np.random.randn(10))
In [43]:
print arr
In [44]:
arr.reshape(2,5)
Out[44]:
In [45]:
int_arr = arr.astype(np.int)
In [46]:
int_arr
Out[46]:
In [47]:
arr * arr
Out[47]:
In [48]:
arr = np.arange(10)
In [49]:
arr[5:8]
Out[49]:
In [50]:
arr[:]=88
In [51]:
arr
Out[51]:
In [52]:
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
In [53]:
arr2d[2]
Out[53]:
In [ ]:
In [54]:
arr2d[:2]
Out[54]:
In [55]:
arr2d[:2, :1]
Out[55]:
In [57]:
arr2d.dtype
Out[57]:
In [58]:
names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
In [60]:
data = np.random.randn(7, 4)
In [61]:
print data
In [62]:
names=='Bob'
Out[62]:
In [65]:
print data[0]
data[0, names=='Bob']
Out[65]:
In [66]:
#1st and 4th row only
data[names=='Bob']
Out[66]:
In [67]:
data[names=='Bob', 2:]
Out[67]:
In [70]:
print (names!='Bob')
print -(names=='Bob')
In [71]:
data[-(names=='Bob')]
Out[71]:
In [72]:
mask = (names == 'Bob') | (names == 'Will')
In [73]:
data[mask]
Out[73]:
In [76]:
print data < 0
In [77]:
data[data < 0 ]
Out[77]:
In [78]:
d = data
In [79]:
data[data <0 ] = 0
print data
In [80]:
points = np.arange(-5, 5, 0.01) # 1000 equally spaced points
In [81]:
xs, ys = np.meshgrid(points, points)
In [82]:
xs.shape
Out[82]:
In [83]:
ys.shape
Out[83]:
In [84]:
z = np.sqrt(xs * xs + ys * ys)
In [85]:
z.shape
Out[85]:
In [91]:
plt.imshow(z)
Out[91]:
In [92]:
plt.imshow(z, cmap=plt.cm.gray)
plt.colorbar()
Out[92]:
In [96]:
arr = np.random.randn(4, 4)
print arr
In [97]:
np.where(arr >0, 2, -3)
Out[97]:
In [98]:
np.where(arr>0, 2, arr)
Out[98]:
In [99]:
arr = np.random.randn(5, 4) # normally-distributed data
In [100]:
arr
Out[100]:
In [101]:
arr.sum(axis=0)
Out[101]:
In [102]:
arr.sum(axis=1)
Out[102]:
In [103]:
arr.mean(axis=1)
Out[103]:
In [104]:
arr.mean(axis=0)
Out[104]:
In [106]:
arr.std()
Out[106]:
In [107]:
arr.var()
Out[107]:
In [110]:
print arr
print arr.argmax()
print arr.argmin()
In [123]:
arr = np.random.randn(100)
from numpy.random import randn
In [115]:
#how many -ve numbers?
(arr<0).sum()
Out[115]:
In [132]:
arr = randn(5, 3)
print arr
In [134]:
arr.sort(axis=1)
print arr
In [133]:
arr.sort(axis=0)
print arr
In [137]:
#Random number generation
print np.random.normal(size=(4,4))
In [ ]: