In [8]:
import pandas as pd
In [5]:
cd "/home/bakuda/pandas-book/"
In [6]:
ls
In [9]:
df = pd.read_csv('ch06/ex1.csv')
In [10]:
df.shape
Out[10]:
In [11]:
df
Out[11]:
In [15]:
#OR
#df = pd.read_table('ch06/ex1.csv', sep=',')
In [17]:
pd.read_csv('ch06/ex2.csv', header=None)
Out[17]:
In [18]:
!cat ch06/ex2.csv
In [19]:
pd.read_csv('ch06/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
Out[19]:
In [20]:
names = ['a', 'b', 'c', 'd', 'message']
In [24]:
pd.read_csv('ch06/ex2.csv', names=names, index_col=4)
# OR
#pd.read_csv('ch06/ex2.csv', names=names, index_col='message')
Out[24]:
In [25]:
parsed = pd.read_csv('ch06/csv_mindex.csv', index_col=['key1', 'key2'])
In [26]:
parsed
Out[26]:
In [27]:
!cat ch06/csv_mindex.csv
In [28]:
list(open('ch06/ex3.txt'))
Out[28]:
In [30]:
!cat ch06/ex3.txt
In [35]:
pd.read_csv('ch06/ex3.txt', sep='\s+')
Out[35]:
In [39]:
#reading nrows number of nows at a time
pd.read_csv('ch06/ex6.csv', nrows=4)
Out[39]:
In [50]:
chunker = pd.read_csv('ch06/ex6.csv', chunksize=1000)
tot = pd.Series([])
for i, piece in enumerate(chunker):
#print 'chunker %d' %(i)
tot = tot.add(piece['key'].value_counts(), fill_value=0)
#print piece['key'].value_counts()
tot = tot.order(ascending=False)
In [51]:
#tot
In [ ]: