In [1]:
#http://nbviewer.ipython.org/github/lisa-lab/pylearn2/blob/master/pylearn2/scripts/tutorials/softmax_regression.ipynb
%autosave 20


Autosaving every 20 seconds

In [2]:
#PYLEARN2_DATA_PATH='/home/ubuntu/stableDisk/img/pyl2-corp'

In [3]:
dataset = """!obj:pylearn2.datasets.mnist.MNIST {
        which_set: 'train',
        one_hot: 1,
        start: 0,
        stop: 50000
    }"""

In [4]:
model = """!obj:pylearn2.models.softmax_regression.SoftmaxRegression {
    n_classes: 10,
    irange: 0.,
    nvis: 784,
}"""

In [56]:
algorithm = """!obj:pylearn2.training_algorithms.bgd.BGD {
        batch_size: 5000,
        line_search_mode: 'exhaustive',     # for bgd.BGD
        conjugate: 1,                       # for bgd.BGD
        #learning_rate: 0.1,                  # for sgd.SGD
        monitoring_dataset:
            {
                'train' : *train,
                'valid' : !obj:pylearn2.datasets.mnist.MNIST {
                              which_set: 'train',
                              one_hot: 1,
                              start: 50000,
                              stop:  60000
                          },
                'test'  : !obj:pylearn2.datasets.mnist.MNIST {
                              which_set: 'test',
                              one_hot: 1,
                          }
            },
        termination_criterion: !obj:pylearn2.termination_criteria.MonitorBased {
            channel_name: "valid_y_misclass"
        }
    }"""

In [57]:
train = """!obj:pylearn2.train.Train {
    dataset: &train %(dataset)s,
    model: %(model)s,
    algorithm: %(algorithm)s,
    extensions: [
        !obj:pylearn2.train_extensions.best_params.MonitorBasedSaveBest {
             channel_name: 'valid_y_misclass',
             save_path: "softmax_regression_best.pkl"
        },
    ],
    save_path: "softmax_regression.pkl",
    save_freq: 1
}""" % locals()

In [58]:
print train


!obj:pylearn2.train.Train {
    dataset: &train !obj:pylearn2.datasets.mnist.MNIST {
        which_set: 'train',
        one_hot: 1,
        start: 0,
        stop: 50000
    },
    model: !obj:pylearn2.models.softmax_regression.SoftmaxRegression {
    n_classes: 10,
    irange: 0.,
    nvis: 784,
},
    algorithm: !obj:pylearn2.training_algorithms.bgd.BGD {
        batch_size: 5000,
        line_search_mode: 'exhaustive',     # for bgd.BGD
        conjugate: 1,                       # for bgd.BGD
        #learning_rate: 0.1,                  # for sgd.SGD
        monitoring_dataset:
            {
                'train' : *train,
                'valid' : !obj:pylearn2.datasets.mnist.MNIST {
                              which_set: 'train',
                              one_hot: 1,
                              start: 50000,
                              stop:  60000
                          },
                'test'  : !obj:pylearn2.datasets.mnist.MNIST {
                              which_set: 'test',
                              one_hot: 1,
                          }
            },
        termination_criterion: !obj:pylearn2.termination_criteria.MonitorBased {
            channel_name: "valid_y_misclass"
        }
    },
    extensions: [
        !obj:pylearn2.train_extensions.best_params.MonitorBasedSaveBest {
             channel_name: 'valid_y_misclass',
             save_path: "softmax_regression_best.pkl"
        },
    ],
    save_path: "softmax_regression.pkl",
    save_freq: 1
}

In [59]:
from pylearn2.config import yaml_parse
train = yaml_parse.load(train)
train.main_loop()


compiling begin_record_entry...
compiling begin_record_entry done. Time elapsed: 0.000000 seconds
Monitored channels: 
	ave_grad_mult
	ave_grad_size
	ave_step_size
	monitor_seconds_per_epoch
	test_objective
	test_y_col_norms_max
	test_y_col_norms_mean
	test_y_col_norms_min
	test_y_max_max_class
	test_y_mean_max_class
	test_y_min_max_class
	test_y_misclass
	test_y_nll
	test_y_row_norms_max
	test_y_row_norms_mean
	test_y_row_norms_min
	train_objective
	train_y_col_norms_max
	train_y_col_norms_mean
	train_y_col_norms_min
	train_y_max_max_class
	train_y_mean_max_class
	train_y_min_max_class
	train_y_misclass
	train_y_nll
	train_y_row_norms_max
	train_y_row_norms_mean
	train_y_row_norms_min
	valid_objective
	valid_y_col_norms_max
	valid_y_col_norms_mean
	valid_y_col_norms_min
	valid_y_max_max_class
	valid_y_mean_max_class
	valid_y_min_max_class
	valid_y_misclass
	valid_y_nll
	valid_y_row_norms_max
	valid_y_row_norms_mean
	valid_y_row_norms_min
Compiling accum...
graph size: 56
graph size: 52
graph size: 52
Compiling accum done. Time elapsed: 1.000000 seconds
Monitoring step:
	Epochs seen: 0
	Batches seen: 0
	Examples seen: 0
	ave_grad_mult: 0.0
	ave_grad_size: 0.0
	ave_step_size: 0.0
	monitor_seconds_per_epoch: 0.0
	test_objective: 2.30258509299
	test_y_col_norms_max: 0.0
	test_y_col_norms_mean: 0.0
	test_y_col_norms_min: 0.0
	test_y_max_max_class: 0.1
	test_y_mean_max_class: 0.1
	test_y_min_max_class: 0.1
	test_y_misclass: 0.902
	test_y_nll: 2.30258509299
	test_y_row_norms_max: 0.0
	test_y_row_norms_mean: 0.0
	test_y_row_norms_min: 0.0
	train_objective: 2.30258509299
	train_y_col_norms_max: 0.0
	train_y_col_norms_mean: 0.0
	train_y_col_norms_min: 0.0
	train_y_max_max_class: 0.1
	train_y_mean_max_class: 0.1
	train_y_min_max_class: 0.1
	train_y_misclass: 0.90136
	train_y_nll: 2.30258509299
	train_y_row_norms_max: 0.0
	train_y_row_norms_mean: 0.0
	train_y_row_norms_min: 0.0
	valid_objective: 2.30258509299
	valid_y_col_norms_max: 0.0
	valid_y_col_norms_mean: 0.0
	valid_y_col_norms_min: 0.0
	valid_y_max_max_class: 0.1
	valid_y_mean_max_class: 0.1
	valid_y_min_max_class: 0.1
	valid_y_misclass: 0.9009
	valid_y_nll: 2.30258509299
	valid_y_row_norms_max: 0.0
	valid_y_row_norms_mean: 0.0
	valid_y_row_norms_min: 0.0
Time this epoch: 32.000000 seconds
Monitoring step:
	Epochs seen: 1
	Batches seen: 10
	Examples seen: 50000
	ave_grad_mult: 2.42674550538
	ave_grad_size: 0.459652485838
	ave_step_size: 1.1398668499
	monitor_seconds_per_epoch: 32.0
	test_objective: 0.291959023706
	test_y_col_norms_max: 3.84736626614
	test_y_col_norms_mean: 3.44938578007
	test_y_col_norms_min: 2.65670626663
	test_y_max_max_class: 0.999997773332
	test_y_mean_max_class: 0.895789248557
	test_y_min_max_class: 0.210107128255
	test_y_misclass: 0.0819
	test_y_nll: 0.291959023706
	test_y_row_norms_max: 1.05067239091
	test_y_row_norms_mean: 0.297745452803
	test_y_row_norms_min: 0.0
	train_objective: 0.296726579517
	train_y_col_norms_max: 3.84736626614
	train_y_col_norms_mean: 3.44938578007
	train_y_col_norms_min: 2.65670626663
	train_y_max_max_class: 0.999998983271
	train_y_mean_max_class: 0.89107733902
	train_y_min_max_class: 0.243243097303
	train_y_misclass: 0.08262
	train_y_nll: 0.296726579517
	train_y_row_norms_max: 1.05067239091
	train_y_row_norms_mean: 0.297745452803
	train_y_row_norms_min: 0.0
	valid_objective: 0.285538146975
	valid_y_col_norms_max: 3.84736626614
	valid_y_col_norms_mean: 3.44938578007
	valid_y_col_norms_min: 2.65670626663
	valid_y_max_max_class: 0.99999830798
	valid_y_mean_max_class: 0.897064376308
	valid_y_min_max_class: 0.248221909725
	valid_y_misclass: 0.0782
	valid_y_nll: 0.285538146975
	valid_y_row_norms_max: 1.05067239091
	valid_y_row_norms_mean: 0.297745452803
	valid_y_row_norms_min: 0.0
Saving to softmax_regression.pkl...
Saving to softmax_regression.pkl done. Time elapsed: 0.000000 seconds
Time this epoch: 32.000000 seconds
Monitoring step:
	Epochs seen: 2
	Batches seen: 20
	Examples seen: 100000
	ave_grad_mult: 2.7229913995
	ave_grad_size: 0.212862481359
	ave_step_size: 0.543583064891
	monitor_seconds_per_epoch: 32.0
	test_objective: 0.28495499265
	test_y_col_norms_max: 4.81607013697
	test_y_col_norms_mean: 4.21584511449
	test_y_col_norms_min: 3.28219343164
	test_y_max_max_class: 0.99999962323
	test_y_mean_max_class: 0.905540454826
	test_y_min_max_class: 0.243516228695
	test_y_misclass: 0.0811
	test_y_nll: 0.28495499265
	test_y_row_norms_max: 1.21910206043
	test_y_row_norms_mean: 0.375146708025
	test_y_row_norms_min: 0.0
	train_objective: 0.279943016711
	train_y_col_norms_max: 4.81607013697
	train_y_col_norms_mean: 4.21584511449
	train_y_col_norms_min: 3.28219343164
	train_y_max_max_class: 0.999999763452
	train_y_mean_max_class: 0.902362408132
	train_y_min_max_class: 0.242062832474
	train_y_misclass: 0.079
	train_y_nll: 0.279943016711
	train_y_row_norms_max: 1.21910206043
	train_y_row_norms_mean: 0.375146708025
	train_y_row_norms_min: 0.0
	valid_objective: 0.274345756676
	valid_y_col_norms_max: 4.81607013697
	valid_y_col_norms_mean: 4.21584511449
	valid_y_col_norms_min: 3.28219343164
	valid_y_max_max_class: 0.999999282252
	valid_y_mean_max_class: 0.906968529641
	valid_y_min_max_class: 0.244351153943
	valid_y_misclass: 0.0756
	valid_y_nll: 0.274345756676
	valid_y_row_norms_max: 1.21910206043
	valid_y_row_norms_mean: 0.375146708025
	valid_y_row_norms_min: 0.0
Saving to softmax_regression.pkl...
Saving to softmax_regression.pkl done. Time elapsed: 0.000000 seconds
Time this epoch: 32.000000 seconds
Monitoring step:
	Epochs seen: 3
	Batches seen: 30
	Examples seen: 150000
	ave_grad_mult: 2.94688703207
	ave_grad_size: 0.121585109473
	ave_step_size: 0.330356515993
	monitor_seconds_per_epoch: 32.0
	test_objective: 0.279183324593
	test_y_col_norms_max: 5.36573616676
	test_y_col_norms_mean: 4.72036477412
	test_y_col_norms_min: 3.76520877217
	test_y_max_max_class: 0.999999747113
	test_y_mean_max_class: 0.910141229869
	test_y_min_max_class: 0.259831143618
	test_y_misclass: 0.0794
	test_y_nll: 0.279183324593
	test_y_row_norms_max: 1.34711187148
	test_y_row_norms_mean: 0.426050149303
	test_y_row_norms_min: 0.0
	train_objective: 0.269252125704
	train_y_col_norms_max: 5.36573616676
	train_y_col_norms_mean: 4.72036477412
	train_y_col_norms_min: 3.76520877217
	train_y_max_max_class: 0.999999897248
	train_y_mean_max_class: 0.906503256329
	train_y_min_max_class: 0.244821560716
	train_y_misclass: 0.07668
	train_y_nll: 0.269252125704
	train_y_row_norms_max: 1.34711187148
	train_y_row_norms_mean: 0.426050149303
	train_y_row_norms_min: 0.0
	valid_objective: 0.273166881784
	valid_y_col_norms_max: 5.36573616676
	valid_y_col_norms_mean: 4.72036477412
	valid_y_col_norms_min: 3.76520877217
	valid_y_max_max_class: 0.999999519424
	valid_y_mean_max_class: 0.910427478117
	valid_y_min_max_class: 0.262867277861
	valid_y_misclass: 0.0772
	valid_y_nll: 0.273166881784
	valid_y_row_norms_max: 1.34711187148
	valid_y_row_norms_mean: 0.426050149303
	valid_y_row_norms_min: 0.0
Saving to softmax_regression.pkl...
Saving to softmax_regression.pkl done. Time elapsed: 0.000000 seconds
Time this epoch: 32.000000 seconds
Monitoring step:
	Epochs seen: 4
	Batches seen: 40
	Examples seen: 200000
	ave_grad_mult: 3.06095846462
	ave_grad_size: 0.087343651465
	ave_step_size: 0.25151521273
	monitor_seconds_per_epoch: 32.0
	test_objective: 0.281619501489
	test_y_col_norms_max: 5.78970250247
	test_y_col_norms_mean: 5.14848493463
	test_y_col_norms_min: 4.12959171981
	test_y_max_max_class: 0.999999961606
	test_y_mean_max_class: 0.91227117732
	test_y_min_max_class: 0.257789287314
	test_y_misclass: 0.0809
	test_y_nll: 0.281619501489
	test_y_row_norms_max: 1.53655975006
	test_y_row_norms_mean: 0.469191348662
	test_y_row_norms_min: 0.0
	train_objective: 0.263561800952
	train_y_col_norms_max: 5.78970250247
	train_y_col_norms_mean: 5.14848493463
	train_y_col_norms_min: 4.12959171981
	train_y_max_max_class: 0.999999986734
	train_y_mean_max_class: 0.908020709496
	train_y_min_max_class: 0.25291904385
	train_y_misclass: 0.07402
	train_y_nll: 0.263561800952
	train_y_row_norms_max: 1.53655975006
	train_y_row_norms_mean: 0.469191348662
	train_y_row_norms_min: 0.0
	valid_objective: 0.266440138565
	valid_y_col_norms_max: 5.78970250247
	valid_y_col_norms_mean: 5.14848493463
	valid_y_col_norms_min: 4.12959171981
	valid_y_max_max_class: 0.999999895147
	valid_y_mean_max_class: 0.912481835757
	valid_y_min_max_class: 0.252653804071
	valid_y_misclass: 0.0723
	valid_y_nll: 0.266440138565
	valid_y_row_norms_max: 1.53655975006
	valid_y_row_norms_mean: 0.469191348662
	valid_y_row_norms_min: 0.0
Saving to softmax_regression.pkl...
Saving to softmax_regression.pkl done. Time elapsed: 0.000000 seconds
Time this epoch: 32.000000 seconds
Monitoring step:
	Epochs seen: 5
	Batches seen: 50
	Examples seen: 250000
	ave_grad_mult: 3.11156773153
	ave_grad_size: 0.0729705953681
	ave_step_size: 0.218813575028
	monitor_seconds_per_epoch: 32.0
	test_objective: 0.279756515107
	test_y_col_norms_max: 6.25005328692
	test_y_col_norms_mean: 5.51725947216
	test_y_col_norms_min: 4.43848919909
	test_y_max_max_class: 0.999999975973
	test_y_mean_max_class: 0.915923881842
	test_y_min_max_class: 0.25866032752
	test_y_misclass: 0.0791
	test_y_nll: 0.279756515107
	test_y_row_norms_max: 1.71358537767
	test_y_row_norms_mean: 0.505716589803
	test_y_row_norms_min: 0.0
	train_objective: 0.26068183448
	train_y_col_norms_max: 6.25005328692
	train_y_col_norms_mean: 5.51725947216
	train_y_col_norms_min: 4.43848919909
	train_y_max_max_class: 0.999999982755
	train_y_mean_max_class: 0.912226630764
	train_y_min_max_class: 0.23877622507
	train_y_misclass: 0.07398
	train_y_nll: 0.26068183448
	train_y_row_norms_max: 1.71358537767
	train_y_row_norms_mean: 0.505716589803
	train_y_row_norms_min: 0.0
	valid_objective: 0.267533404828
	valid_y_col_norms_max: 6.25005328692
	valid_y_col_norms_mean: 5.51725947216
	valid_y_col_norms_min: 4.43848919909
	valid_y_max_max_class: 0.999999868684
	valid_y_mean_max_class: 0.916747406348
	valid_y_min_max_class: 0.256345530956
	valid_y_misclass: 0.0726
	valid_y_nll: 0.267533404828
	valid_y_row_norms_max: 1.71358537767
	valid_y_row_norms_mean: 0.505716589803
	valid_y_row_norms_min: 0.0
Saving to softmax_regression.pkl...
Saving to softmax_regression.pkl done. Time elapsed: 0.000000 seconds
Time this epoch: 32.000000 seconds
Monitoring step:
	Epochs seen: 6
	Batches seen: 60
	Examples seen: 300000
	ave_grad_mult: 3.19037484517
	ave_grad_size: 0.0681826863739
	ave_step_size: 0.212048207105
	monitor_seconds_per_epoch: 32.0
	test_objective: 0.278183212868
	test_y_col_norms_max: 6.61773808823
	test_y_col_norms_mean: 5.85265994759
	test_y_col_norms_min: 4.7246947841
	test_y_max_max_class: 0.999999918464
	test_y_mean_max_class: 0.915942497818
	test_y_min_max_class: 0.241312574319
	test_y_misclass: 0.079
	test_y_nll: 0.278183212868
	test_y_row_norms_max: 1.81234814408
	test_y_row_norms_mean: 0.53969043257
	test_y_row_norms_min: 0.0
	train_objective: 0.258776678906
	train_y_col_norms_max: 6.61773808823
	train_y_col_norms_mean: 5.85265994759
	train_y_col_norms_min: 4.7246947841
	train_y_max_max_class: 0.99999998314
	train_y_mean_max_class: 0.912247572894
	train_y_min_max_class: 0.242989029859
	train_y_misclass: 0.07258
	train_y_nll: 0.258776678906
	train_y_row_norms_max: 1.81234814408
	train_y_row_norms_mean: 0.53969043257
	train_y_row_norms_min: 0.0
	valid_objective: 0.269362149667
	valid_y_col_norms_max: 6.61773808823
	valid_y_col_norms_mean: 5.85265994759
	valid_y_col_norms_min: 4.7246947841
	valid_y_max_max_class: 0.999999910586
	valid_y_mean_max_class: 0.916442594982
	valid_y_min_max_class: 0.27889564694
	valid_y_misclass: 0.0752
	valid_y_nll: 0.269362149667
	valid_y_row_norms_max: 1.81234814408
	valid_y_row_norms_mean: 0.53969043257
	valid_y_row_norms_min: 0.0
Saving to softmax_regression.pkl...
Saving to softmax_regression.pkl done. Time elapsed: 0.000000 seconds
Time this epoch: 32.000000 seconds
Monitoring step:
	Epochs seen: 7
	Batches seen: 70
	Examples seen: 350000
	ave_grad_mult: 3.25427552263
	ave_grad_size: 0.0662370515518
	ave_step_size: 0.212437508554
	monitor_seconds_per_epoch: 32.0
	test_objective: 0.276463834491
	test_y_col_norms_max: 6.97756305257
	test_y_col_norms_mean: 6.15997134423
	test_y_col_norms_min: 4.99057373458
	test_y_max_max_class: 0.999999959883
	test_y_mean_max_class: 0.919271641593
	test_y_min_max_class: 0.232250962056
	test_y_misclass: 0.0791
	test_y_nll: 0.276463834491
	test_y_row_norms_max: 1.94114764922
	test_y_row_norms_mean: 0.569787872012
	test_y_row_norms_min: 0.0
	train_objective: 0.255875821731
	train_y_col_norms_max: 6.97756305257
	train_y_col_norms_mean: 6.15997134423
	train_y_col_norms_min: 4.99057373458
	train_y_max_max_class: 0.999999986761
	train_y_mean_max_class: 0.915449736307
	train_y_min_max_class: 0.262414542312
	train_y_misclass: 0.07208
	train_y_nll: 0.255875821731
	train_y_row_norms_max: 1.94114764922
	train_y_row_norms_mean: 0.569787872012
	train_y_row_norms_min: 0.0
	valid_objective: 0.269106516399
	valid_y_col_norms_max: 6.97756305257
	valid_y_col_norms_mean: 6.15997134423
	valid_y_col_norms_min: 4.99057373458
	valid_y_max_max_class: 0.99999995977
	valid_y_mean_max_class: 0.91842641437
	valid_y_min_max_class: 0.220829022028
	valid_y_misclass: 0.0752
	valid_y_nll: 0.269106516399
	valid_y_row_norms_max: 1.94114764922
	valid_y_row_norms_mean: 0.569787872012
	valid_y_row_norms_min: 0.0
Saving to softmax_regression.pkl...
Saving to softmax_regression.pkl done. Time elapsed: 0.000000 seconds
Time this epoch: 32.000000 seconds
Monitoring step:
	Epochs seen: 8
	Batches seen: 80
	Examples seen: 400000
	ave_grad_mult: 3.27272578659
	ave_grad_size: 0.065193507663
	ave_step_size: 0.209507843133
	monitor_seconds_per_epoch: 32.0
	test_objective: 0.27655215298
	test_y_col_norms_max: 7.30132953922
	test_y_col_norms_mean: 6.42197355156
	test_y_col_norms_min: 5.15367059455
	test_y_max_max_class: 0.999999963273
	test_y_mean_max_class: 0.918077954229
	test_y_min_max_class: 0.246185005029
	test_y_misclass: 0.077
	test_y_nll: 0.27655215298
	test_y_row_norms_max: 2.04807659951
	test_y_row_norms_mean: 0.596363333954
	test_y_row_norms_min: 0.0
	train_objective: 0.251294152506
	train_y_col_norms_max: 7.30132953922
	train_y_col_norms_mean: 6.42197355156
	train_y_col_norms_min: 5.15367059455
	train_y_max_max_class: 0.999999990582
	train_y_mean_max_class: 0.914918757394
	train_y_min_max_class: 0.253171378726
	train_y_misclass: 0.07042
	train_y_nll: 0.251294152506
	train_y_row_norms_max: 2.04807659951
	train_y_row_norms_mean: 0.596363333954
	train_y_row_norms_min: 0.0
	valid_objective: 0.268260895378
	valid_y_col_norms_max: 7.30132953922
	valid_y_col_norms_mean: 6.42197355156
	valid_y_col_norms_min: 5.15367059455
	valid_y_max_max_class: 0.999999877365
	valid_y_mean_max_class: 0.91932733744
	valid_y_min_max_class: 0.256145293681
	valid_y_misclass: 0.0728
	valid_y_nll: 0.268260895378
	valid_y_row_norms_max: 2.04807659951
	valid_y_row_norms_mean: 0.596363333954
	valid_y_row_norms_min: 0.0
Saving to softmax_regression.pkl...
Saving to softmax_regression.pkl done. Time elapsed: 0.000000 seconds
Time this epoch: 32.000000 seconds
Monitoring step:
	Epochs seen: 9
	Batches seen: 90
	Examples seen: 450000
	ave_grad_mult: 3.32138053996
	ave_grad_size: 0.0639427431351
	ave_step_size: 0.209206837815
	monitor_seconds_per_epoch: 32.0
	test_objective: 0.272143108687
	test_y_col_norms_max: 7.57544058297
	test_y_col_norms_mean: 6.69310339119
	test_y_col_norms_min: 5.39333837635
	test_y_max_max_class: 0.999999990598
	test_y_mean_max_class: 0.921213526655
	test_y_min_max_class: 0.253036742732
	test_y_misclass: 0.0745
	test_y_nll: 0.272143108687
	test_y_row_norms_max: 2.16516164442
	test_y_row_norms_mean: 0.622773151754
	test_y_row_norms_min: 0.0
	train_objective: 0.248213933326
	train_y_col_norms_max: 7.57544058297
	train_y_col_norms_mean: 6.69310339119
	train_y_col_norms_min: 5.39333837635
	train_y_max_max_class: 0.999999989089
	train_y_mean_max_class: 0.917575466467
	train_y_min_max_class: 0.25214031527
	train_y_misclass: 0.06912
	train_y_nll: 0.248213933326
	train_y_row_norms_max: 2.16516164442
	train_y_row_norms_mean: 0.622773151754
	train_y_row_norms_min: 0.0
	valid_objective: 0.26452645505
	valid_y_col_norms_max: 7.57544058297
	valid_y_col_norms_mean: 6.69310339119
	valid_y_col_norms_min: 5.39333837635
	valid_y_max_max_class: 0.999999980474
	valid_y_mean_max_class: 0.922253206417
	valid_y_min_max_class: 0.275636373003
	valid_y_misclass: 0.0721
	valid_y_nll: 0.26452645505
	valid_y_row_norms_max: 2.16516164442
	valid_y_row_norms_mean: 0.622773151754
	valid_y_row_norms_min: 0.0
Saving to softmax_regression.pkl...
Saving to softmax_regression.pkl done. Time elapsed: 0.000000 seconds
Saving to softmax_regression.pkl...
Saving to softmax_regression.pkl done. Time elapsed: 0.000000 seconds

In [50]:
!/usr/local/lib/python2.7/dist-packages/pylearn2/scripts/print_monitor.py softmax_regression_best.pkl


/usr/local/lib/python2.7/dist-packages/pylearn2/models/mlp.py:41: UserWarning: MLP changing the recursion limit.
  warnings.warn("MLP changing the recursion limit.")
epochs seen:  27
time trained:  74.5750799179
learning_rate : 0.1
monitor_seconds_per_epoch : 1.0
test_objective : 0.525645077342
test_y_col_norms_max : 1.36876984952
test_y_col_norms_mean : 1.21279755629
test_y_col_norms_min : 0.978046018316
test_y_max_max_class : 0.998390070153
test_y_mean_max_class : 0.707043402415
test_y_min_max_class : 0.138155780862
test_y_misclass : 0.1212
test_y_nll : 0.525645077342
test_y_row_norms_max : 0.387471856771
test_y_row_norms_mean : 0.0959992478682
test_y_row_norms_min : 0.0
train_objective : 0.557478745151
train_y_col_norms_max : 1.36876984952
train_y_col_norms_mean : 1.21279755629
train_y_col_norms_min : 0.978046018316
train_y_max_max_class : 0.998155097537
train_y_mean_max_class : 0.697060251235
train_y_min_max_class : 0.156963994985
train_y_misclass : 0.13368
train_y_nll : 0.557478745151
train_y_row_norms_max : 0.387471856771
train_y_row_norms_mean : 0.0959992478682
train_y_row_norms_min : 0.0
valid_objective : 0.510181701317
valid_y_col_norms_max : 1.36876984952
valid_y_col_norms_mean : 1.21279755629
valid_y_col_norms_min : 0.978046018316
valid_y_max_max_class : 0.999280479451
valid_y_mean_max_class : 0.71345600523
valid_y_min_max_class : 0.164950385055
valid_y_misclass : 0.1182
valid_y_nll : 0.510181701317
valid_y_row_norms_max : 0.387471856771
valid_y_row_norms_mean : 0.0959992478682
valid_y_row_norms_min : 0.0

In [51]:
!/usr/local/lib/python2.7/dist-packages/pylearn2/scripts/show_weights.py softmax_regression_best.pkl


making weights report
loading model
/usr/local/lib/python2.7/dist-packages/pylearn2/models/mlp.py:41: UserWarning: MLP changing the recursion limit.
  warnings.warn("MLP changing the recursion limit.")
loading done
loading dataset...
...done
smallest enc weight magnitude: 0.0
mean enc weight magnitude: 0.0247576242979
max enc weight magnitude: 0.275250196587
min norm:  0.978046018316
mean norm:  1.21279755629
max norm:  1.36876984952
Traceback (most recent call last):
  File "/usr/local/lib/python2.7/dist-packages/pylearn2/scripts/show_weights.py", line 24, in <module>
    main()
  File "/usr/local/lib/python2.7/dist-packages/pylearn2/scripts/show_weights.py", line 19, in main
    pv.show()
  File "/usr/local/lib/python2.7/dist-packages/pylearn2/gui/patch_viewer.py", line 224, in show
    show(self.image)
  File "/usr/local/lib/python2.7/dist-packages/pylearn2/utils/image.py", line 147, in show
    image.save(name)
  File "/usr/local/lib/python2.7/dist-packages/PIL/Image.py", line 1439, in save
    save_handler(self, fp, filename)
  File "/usr/local/lib/python2.7/dist-packages/PIL/PngImagePlugin.py", line 572, in _save
    ImageFile._save(im, _idat(fp, chunk), [("zip", (0,0)+im.size, 0, rawmode)])
  File "/usr/local/lib/python2.7/dist-packages/PIL/ImageFile.py", line 481, in _save
    e = Image._getencoder(im.mode, e, a, im.encoderconfig)
  File "/usr/local/lib/python2.7/dist-packages/PIL/Image.py", line 401, in _getencoder
    raise IOError("encoder %s not available" % encoder_name)
IOError: encoder zip not available

In [ ]: