In [10]:
from sklearn import datasets
from sklearn.decomposition import RandomizedPCA
from sklearn.decomposition import PCA
from sklearn import svm
import pylab as pl
import numpy as np
In [2]:
iris = datasets.load_iris()
In [4]:
X, y = iris.data, iris.target
In [6]:
X.shape, y.shape
Out[6]:
In [7]:
iris.target_names
Out[7]:
In [8]:
X_rand_pca = RandomizedPCA(n_components=2).fit_transform(X)
In [9]:
X_rand_pca.shape
Out[9]:
In [12]:
from itertools import cycle
color = ['b', 'g', 'r']
for i,c in zip(np.unique(y), cycle(color)):
pl.scatter(X_rand_pca[y==i,0], X_rand_pca[y==i, 1], c=c, label=i, alpha=.8)
In [13]:
from sklearn.decomposition import PCA
iris_pca_basic = PCA(n_components=2).fit_transform(iris.data)
for i, c in zip(np.unique(iris.target), cycle(color)):
pl.scatter(iris_pca_basic[iris.target==i,0], iris_pca_basic[iris.target==i,1],
c=c, alpha=.8)
In [30]:
from sklearn.decomposition import ProbabilisticPCA, KernelPCA
iris_pca_probalistic = ProbabilisticPCA(n_components=2).fit_transform(iris.data)
X_p= iris_pca_probalistic
for i, c in zip(np.unique(iris.target), cycle(color)):
pl.scatter(X_p[iris.target==i,0], X_p[iris.target==i,1], c=c, alpha=.7, label=iris.target_names[i])
pl.legend(loc='upper right')
In [29]:
from sklearn.decomposition import ProbabilisticPCA, KernelPCA
iris_pca_probalistic = KernelPCA(n_components=2).fit_transform(iris.data)
X_p= iris_pca_probalistic
for i, c, name in zip(np.unique(iris.target), cycle(color), np.unique(iris.target_names)):
pl.scatter(X_p[iris.target==i,0], X_p[iris.target==i,1], c=c, alpha=.7, label=name)
pl.legend(loc='lower right')
In [32]:
clf = svm.SVC(kernel='rbf').fit(X_p, iris.target)
In [33]:
clf
Out[33]:
In [34]:
from sklearn.cross_validation import cross_val_score
cross_val_score(clf, X_p, iris.target, cv=10)
Out[34]:
In [35]:
cross_val_score(svm.SVC(kernel='rbf'), iris.data, iris.target, cv=10)
Out[35]:
In [36]:
iris.data.shape, X_p.shape
Out[36]:
In [ ]: