In [5]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import yt
from galaxy_analysis.plot.plot_styles import *
from galaxy_analysis.analysis import Galaxy
In [6]:
#
# Fidcuial
#
gal = Galaxy('DD1053', wdir = '/home/aemerick/work/enzo_runs/leo_p/fiducial/sn_H2atten_H2sh/')
ds_f = yt.load('/home/aemerick/work/enzo_runs/leo_p/fiducial/3pc_H2/py3temp/DD0162/DD0162')
data_f = ds_f.all_data()
gal_f = Galaxy('DD0162', wdir = '/home/aemerick/work/enzo_runs/leo_p/fiducial/3pc_H2/py3temp/')
ds_avg = yt.load('/home/aemerick/work/enzo_runs/leo_p/IMF_average/lvl8/DD0148/DD0148')
data_avg = ds_avg.all_data()
gal_avg = Galaxy('DD0148', wdir = '/home/aemerick/work/enzo_runs/leo_p/IMF_average/lvl8/')
In [13]:
#
# plot stellar abundances
#
fig, ax = plt.subplots(1,2)
fig.set_size_inches(12,6)
#
# first one
#
x = gal_f.df[('io','particle_Fe_over_H')]
y = gal_f.df[('io','particle_Mg_over_Fe')]
z = gal_f.df['creation_time'].to('Myr').value
ax[0].scatter(x,y,c=z,s = 20)
x = gal_avg.df[('io','particle_Fe_over_H')]
y = gal_avg.df[('io','particle_Mg_over_Fe')]
z = gal_avg.df['creation_time'].to('Myr').value
ax[1].scatter(x,y,c=z,s = 20)
for a in ax:
a.set_xlabel('[Fe/H]')
a.set_ylabel('[Mg/Fe]')
a.set_xlim(-15,0)
a.set_ylim(-1,2)# = gal_f.df[('io','particle_Fe_over_H')]
plt.tight_layout()
In [27]:
#
# plot stellar abundances
#
fig, ax = plt.subplots(1,2)
fig.set_size_inches(12,6)
field = 'particle_Fe_over_H'
#
# first one
#
y = gal_f.df[('io',field)]
x = gal_f.df['creation_time'].to('Myr').value
ax[0].scatter(x-np.min(x),y,s = 20)
y = gal_avg.df[('io',field)]
x = gal_avg.df['creation_time'].to('Myr').value
ax[1].scatter(x-np.min(x),y,s = 20)
y = gal.df[('io',field)]
x = gal.df['creation_time'].to('Myr').value
ax[0].scatter(x-np.min(x),y,s = 20, marker = '*', color = 'black')
for a in ax:
a.set_xlabel('Creation Time (Myr)')
a.set_ylabel('[Fe/H]')
a.set_xlim(0,500)
a.set_ylim(-10,0)
plt.tight_layout()
In [12]:
hist, bins = np.histogram(gal.df[('io','particle_Fe_over_H')].value, bins = np.arange(-15,0,0.2))
In [25]:
hist, bins = np.histogram(gal.df[('io','particle_Mg_over_Fe')].value, bins =np.arange(-3,3,0.2))
plt.step( bins[:-1], hist / (1.0*np.sum(hist)), where = 'pre',label='1pc')
hist, bins = np.histogram(gal_f.df[('io','particle_Mg_over_Fe')].value, bins = np.arange(-3,3,0.2))
plt.step( bins[:-1], hist / (1.0*np.sum(hist)), where = 'pre',label='3pc')
hist, bins = np.histogram(gal_avg.df[('io','particle_Mg_over_Fe')].value, bins = np.arange(-3,3,0.2))
plt.step( bins[:-1], hist / (1.0*np.sum(hist)), where = 'pre',label='avg')
plt.legend(loc='best')
plt.xlim(-2,2)
Out[25]:
In [ ]: