Automatically created module for IPython interactive environment
# Tuning hyper-parameters for precision
Best parameters set found on development set:
{'kernel': 'rbf', 'C': 10, 'gamma': 0.001}
Grid scores on development set:
0.987 (+/-0.018) for {'kernel': 'rbf', 'C': 1, 'gamma': 0.001}
0.959 (+/-0.030) for {'kernel': 'rbf', 'C': 1, 'gamma': 0.0001}
0.988 (+/-0.018) for {'kernel': 'rbf', 'C': 10, 'gamma': 0.001}
0.982 (+/-0.027) for {'kernel': 'rbf', 'C': 10, 'gamma': 0.0001}
0.988 (+/-0.018) for {'kernel': 'rbf', 'C': 100, 'gamma': 0.001}
0.982 (+/-0.026) for {'kernel': 'rbf', 'C': 100, 'gamma': 0.0001}
0.988 (+/-0.018) for {'kernel': 'rbf', 'C': 1000, 'gamma': 0.001}
0.982 (+/-0.026) for {'kernel': 'rbf', 'C': 1000, 'gamma': 0.0001}
0.974 (+/-0.014) for {'kernel': 'linear', 'C': 1}
0.974 (+/-0.014) for {'kernel': 'linear', 'C': 10}
0.974 (+/-0.014) for {'kernel': 'linear', 'C': 100}
0.974 (+/-0.014) for {'kernel': 'linear', 'C': 1000}
Detailed classification report:
The model is trained on the full development set.
The scores are computed on the full evaluation set.
precision recall f1-score support
0 1.00 1.00 1.00 89
1 0.97 1.00 0.98 90
2 0.99 0.98 0.98 92
3 1.00 0.99 0.99 93
4 1.00 1.00 1.00 76
5 0.99 0.98 0.99 108
6 0.99 1.00 0.99 89
7 0.99 1.00 0.99 78
8 1.00 0.98 0.99 92
9 0.99 0.99 0.99 92
avg / total 0.99 0.99 0.99 899
# Tuning hyper-parameters for recall
Best parameters set found on development set:
{'kernel': 'rbf', 'C': 10, 'gamma': 0.001}
Grid scores on development set:
0.986 (+/-0.021) for {'kernel': 'rbf', 'C': 1, 'gamma': 0.001}
0.958 (+/-0.029) for {'kernel': 'rbf', 'C': 1, 'gamma': 0.0001}
0.987 (+/-0.021) for {'kernel': 'rbf', 'C': 10, 'gamma': 0.001}
0.981 (+/-0.029) for {'kernel': 'rbf', 'C': 10, 'gamma': 0.0001}
0.987 (+/-0.021) for {'kernel': 'rbf', 'C': 100, 'gamma': 0.001}
0.981 (+/-0.027) for {'kernel': 'rbf', 'C': 100, 'gamma': 0.0001}
0.987 (+/-0.021) for {'kernel': 'rbf', 'C': 1000, 'gamma': 0.001}
0.981 (+/-0.027) for {'kernel': 'rbf', 'C': 1000, 'gamma': 0.0001}
0.973 (+/-0.015) for {'kernel': 'linear', 'C': 1}
0.973 (+/-0.015) for {'kernel': 'linear', 'C': 10}
0.973 (+/-0.015) for {'kernel': 'linear', 'C': 100}
0.973 (+/-0.015) for {'kernel': 'linear', 'C': 1000}
Detailed classification report:
The model is trained on the full development set.
The scores are computed on the full evaluation set.
precision recall f1-score support
0 1.00 1.00 1.00 89
1 0.97 1.00 0.98 90
2 0.99 0.98 0.98 92
3 1.00 0.99 0.99 93
4 1.00 1.00 1.00 76
5 0.99 0.98 0.99 108
6 0.99 1.00 0.99 89
7 0.99 1.00 0.99 78
8 1.00 0.98 0.99 92
9 0.99 0.99 0.99 92
avg / total 0.99 0.99 0.99 899