In [1]:
%matplotlib inline

from bs4 import BeautifulSoup
import matplotlib.pylab as plt
import numpy as np
import pandas as pd
import requests
import re
import seaborn as sns

In [2]:
r = requests.get('https://www.asx300list.com/').content
print(r)


b'<!DOCTYPE html>\n<html lang="en-AU" prefix="og: http://ogp.me/ns#">\n<head>\n    <meta charset="UTF-8">\n    <meta name="viewport" content="width=device-width, initial-scale=1.0">\n    <link rel="profile" href="http://gmpg.org/xfn/11">\n    <link rel="pingback" href="https://www.asx300list.com/xmlrpc.php">\n\n    <title>ASX 300 List - Data for ASX Top 300 Companies</title>\n\n<!-- This site is optimized with the Yoast SEO plugin v4.0.2 - https://yoast.com/wordpress/plugins/seo/ -->\n<meta name="description" content="Download an up-to-date list of Australia&#039;s top 300 companies. ASX 300 constituent data includes GICS Sectors, market cap and index weighting."/>\n<meta name="robots" content="noodp"/>\n<link rel="canonical" href="https://www.asx300list.com/" />\n<meta property="og:locale" content="en_US" />\n<meta property="og:type" content="website" />\n<meta property="og:title" content="ASX 300 List - Data for ASX Top 300 Companies" />\n<meta property="og:description" content="Download an up-to-date list of Australia&#039;s top 300 companies. ASX 300 constituent data includes GICS Sectors, market cap and index weighting." />\n<meta property="og:url" content="https://www.asx300list.com/" />\n<meta property="og:site_name" content="ASX 300 List" />\n<meta property="og:image" content="https://www.asx300list.com/wp-content/uploads/market-index-icon.png" />\n<meta property="og:image" content="https://chart.finance.yahoo.com/z?s=VAS.AX&#038;t=1y&#038;q=l&#038;l=on&#038;z=l&#038;c=%5EAXKO&#038;a=s&#038;lang=en-AU&#038;region=AU" />\n<meta property="og:image" content="https://www.asx300list.com/wp-content/uploads/sandp.png" />\n<meta name="twitter:card" content="summary" />\n<meta name="twitter:description" content="Download an up-to-date list of Australia&#039;s top 300 companies. ASX 300 constituent data includes GICS Sectors, market cap and index weighting." />\n<meta name="twitter:title" content="ASX 300 List - Data for ASX Top 300 Companies" />\n<meta name="twitter:image" content="https://www.asx300list.com/wp-content/uploads/market-index-icon.png" />\n<script type=\'application/ld+json\'>{"@context":"http:\\/\\/schema.org","@type":"WebSite","@id":"#website","url":"https:\\/\\/www.asx300list.com\\/","name":"ASX 300 List","potentialAction":{"@type":"SearchAction","target":"https:\\/\\/www.asx300list.com\\/?s={search_term_string}","query-input":"required name=search_term_string"}}</script>\n<!-- / Yoast SEO plugin. -->\n\n<link rel=\'dns-prefetch\' href=\'//fonts.googleapis.com\' />\n<link rel=\'dns-prefetch\' href=\'//s.w.org\' />\n<link rel="alternate" type="application/rss+xml" title="ASX 300 List &raquo; Feed" href="https://www.asx300list.com/feed/" />\n<link rel="alternate" type="application/rss+xml" title="ASX 300 List &raquo; Comments Feed" href="https://www.asx300list.com/comments/feed/" />\n\t\t<script type="text/javascript">\n\t\t\twindow._wpemojiSettings = {"baseUrl":"https:\\/\\/s.w.org\\/images\\/core\\/emoji\\/2.2.1\\/72x72\\/","ext":".png","svgUrl":"https:\\/\\/s.w.org\\/images\\/core\\/emoji\\/2.2.1\\/svg\\/","svgExt":".svg","source":{"concatemoji":"https:\\/\\/www.asx300list.com\\/wp-includes\\/js\\/wp-emoji-release.min.js?ver=4.7.2"}};\n\t\t\t!function(a,b,c){function d(a){var b,c,d,e,f=String.fromCharCode;if(!k||!k.fillText)return!1;switch(k.clearRect(0,0,j.width,j.height),k.textBaseline="top",k.font="600 32px Arial",a){case"flag":return k.fillText(f(55356,56826,55356,56819),0,0),!(j.toDataURL().length<3e3)&&(k.clearRect(0,0,j.width,j.height),k.fillText(f(55356,57331,65039,8205,55356,57096),0,0),b=j.toDataURL(),k.clearRect(0,0,j.width,j.height),k.fillText(f(55356,57331,55356,57096),0,0),c=j.toDataURL(),b!==c);case"emoji4":return k.fillText(f(55357,56425,55356,57341,8205,55357,56507),0,0),d=j.toDataURL(),k.clearRect(0,0,j.width,j.height),k.fillText(f(55357,56425,55356,57341,55357,56507),0,0),e=j.toDataURL(),d!==e}return!1}function e(a){var c=b.createElement("script");c.src=a,c.defer=c.type="text/javascript",b.getElementsByTagName("head")[0].appendChild(c)}var f,g,h,i,j=b.createElement("canvas"),k=j.getContext&&j.getContext("2d");for(i=Array("flag","emoji4"),c.supports={everything:!0,everythingExceptFlag:!0},h=0;h<i.length;h++)c.supports[i[h]]=d(i[h]),c.supports.everything=c.supports.everything&&c.supports[i[h]],"flag"!==i[h]&&(c.supports.everythingExceptFlag=c.supports.everythingExceptFlag&&c.supports[i[h]]);c.supports.everythingExceptFlag=c.supports.everythingExceptFlag&&!c.supports.flag,c.DOMReady=!1,c.readyCallback=function(){c.DOMReady=!0},c.supports.everything||(g=function(){c.readyCallback()},b.addEventListener?(b.addEventListener("DOMContentLoaded",g,!1),a.addEventListener("load",g,!1)):(a.attachEvent("onload",g),b.attachEvent("onreadystatechange",function(){"complete"===b.readyState&&c.readyCallback()})),f=c.source||{},f.concatemoji?e(f.concatemoji):f.wpemoji&&f.twemoji&&(e(f.twemoji),e(f.wpemoji)))}(window,document,window._wpemojiSettings);\n\t\t</script>\n\t\t<style type="text/css">\nimg.wp-smiley,\nimg.emoji {\n\tdisplay: inline !important;\n\tborder: none !important;\n\tbox-shadow: none !important;\n\theight: 1em !important;\n\twidth: 1em !important;\n\tmargin: 0 .07em !important;\n\tvertical-align: -0.1em !important;\n\tbackground: none !important;\n\tpadding: 0 !important;\n}\n</style>\n<link rel=\'stylesheet\' id=\'responsive-lightbox-swipebox-css\'  href=\'https://www.asx300list.com/wp-content/plugins/responsive-lightbox/assets/swipebox/css/swipebox.min.css?ver=1.6.10\' type=\'text/css\' media=\'all\' />\n<link rel=\'stylesheet\' id=\'wpz-shortcodes-css\'  href=\'https://www.asx300list.com/wp-content/themes/foodica/functions/wpzoom/assets/css/shortcodes.css?ver=4.7.2\' type=\'text/css\' media=\'all\' />\n<link rel=\'stylesheet\' id=\'zoom-font-awesome-css\'  href=\'https://www.asx300list.com/wp-content/themes/foodica/functions/wpzoom/assets/css/font-awesome.min.css?ver=4.7.2\' type=\'text/css\' media=\'all\' />\n<link rel=\'stylesheet\' id=\'foodica-google-fonts-css\'  href=\'//fonts.googleapis.com/css?family=Merriweather%3Aregular%2Citalic%2C700%7CRoboto+Condensed%3Aregular%2Citalic%2C700%7CRoboto+Slab%3Aregular%2C700%26subset%3Dlatin%2C&#038;ver=4.7.2\' type=\'text/css\' media=\'all\' />\n<link rel=\'stylesheet\' id=\'foodica-style-css\'  href=\'https://www.asx300list.com/wp-content/themes/foodica/style.css?ver=4.7.2\' type=\'text/css\' media=\'all\' />\n<link rel=\'stylesheet\' id=\'media-queries-css\'  href=\'https://www.asx300list.com/wp-content/themes/foodica/css/media-queries.css?ver=1.2.1\' type=\'text/css\' media=\'all\' />\n<link rel=\'stylesheet\' id=\'foodica-google-font-default-css\'  href=\'//fonts.googleapis.com/css?family=Cabin%3A400%2C500%7CAnnie+Use+Your+Telescope%7CRoboto+Condensed%3A400%2C700%7CRoboto+Slab%3A400%2C700%2C300%7CMerriweather%3A400%2C400italic%2C700%2C700italic&#038;subset=latin%2Ccyrillic%2Cgreek&#038;ver=4.7.2\' type=\'text/css\' media=\'all\' />\n<link rel=\'stylesheet\' id=\'dashicons-css\'  href=\'https://www.asx300list.com/wp-includes/css/dashicons.min.css?ver=4.7.2\' type=\'text/css\' media=\'all\' />\n<link rel=\'stylesheet\' id=\'wzslider-css\'  href=\'https://www.asx300list.com/wp-content/themes/foodica/functions/wpzoom/assets/css/wzslider.css?ver=4.7.2\' type=\'text/css\' media=\'all\' />\n<link rel=\'stylesheet\' id=\'wpzoom-theme-css\'  href=\'https://www.asx300list.com/wp-content/themes/foodica/styles/default.css?ver=4.7.2\' type=\'text/css\' media=\'all\' />\n<link rel=\'stylesheet\' id=\'wpzoom-custom-css\'  href=\'https://www.asx300list.com/wp-content/themes/foodica/custom.css?ver=4.7.2\' type=\'text/css\' media=\'all\' />\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-includes/js/jquery/jquery.js?ver=1.12.4\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-includes/js/jquery/jquery-migrate.min.js?ver=1.4.1\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/themes/foodica/js/init.js?ver=4.7.2\'></script>\n<link rel=\'https://api.w.org/\' href=\'https://www.asx300list.com/wp-json/\' />\n<link rel="EditURI" type="application/rsd+xml" title="RSD" href="https://www.asx300list.com/xmlrpc.php?rsd" />\n<link rel="wlwmanifest" type="application/wlwmanifest+xml" href="https://www.asx300list.com/wp-includes/wlwmanifest.xml" /> \n<meta name="generator" content="WordPress 4.7.2" />\n<link rel=\'shortlink\' href=\'https://www.asx300list.com/\' />\n<link rel="alternate" type="application/json+oembed" href="https://www.asx300list.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.asx300list.com%2F" />\n<link rel="alternate" type="text/xml+oembed" href="https://www.asx300list.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.asx300list.com%2F&#038;format=xml" />\n<script type="text/javascript" async src="https://www.gstatic.com/charts/loader.js"></script>\r\n\r\n<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script>\r\n\r\n<script type="text/javascript" async src="/wp-content/uploads/charts.js"></script>\r\n\r\n<link rel=\'stylesheet\' href=\'/wp-content/uploads/format.css\' type=\'text/css\' />\r\n\r\n<script>\r\n$(document).ready(function(){\r\n  // Add smooth scrolling to all links\r\n  $("a").on(\'click\', function(event) {\r\n\r\n    // Make sure this.hash has a value before overriding default behavior\r\n    if (this.hash !== "") {\r\n      // Prevent default anchor click behavior\r\n      event.preventDefault();\r\n\r\n      // Store hash\r\n      var hash = this.hash;\r\n\r\n      // Using jQuery\'s animate() method to add smooth page scroll\r\n      // The optional number (800) specifies the number of milliseconds it takes to scroll to the specified area\r\n      $(\'html, body\').animate({\r\n        scrollTop: $(hash).offset().top\r\n      }, 800, function(){\r\n   \r\n        // Add hash (#) to URL when done scrolling (default click behavior)\r\n        window.location.hash = hash;\r\n      });\r\n    } // End if\r\n  });\r\n});\r\n</script>\r\n<script async src="/wp-content/uploads/sorttable.js"></script>\n<!-- Begin Theme Custom CSS -->\n<style type="text/css" id="foodica-custom-css">\n.navbar-brand .tagline{color:#999999;}.top-navbar{background:#eff4f7;}.main-navbar{background:#eff4f7;}.navbar-brand h1 a{font-weight:bold;}.navbar-brand h1,.navbar-brand h1 a{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;}\n</style>\n<!-- End Theme Custom CSS -->\n</head>\n<body class="home page-template-default page page-id-16">\n\n<div class="page-wrap">\n\n    <header class="site-header">\n\n        <nav class="navbar" role="navigation">\n\n            <nav class="top-navbar" role="navigation">\n\n              <div class="inner-wrap">\n\n                    <div class="header_social">\n                        \n                    </div>\n\n\n                    <div class="navbar-header">\n                        \n                           <a class="navbar-toggle" href="#menu-top-slide">\n                               <span class="icon-bar"></span>\n                               <span class="icon-bar"></span>\n                               <span class="icon-bar"></span>\n                           </a>\n\n\n                           \n                    </div>\n\n\n                    <div id="navbar-main">\n\n                        \n\n                    </div><!-- #navbar-main -->\n\n                </div><!-- ./inner-wrap -->\n\n            </nav><!-- .navbar -->\n\n            <div class="clear"></div>\n\n        </nav><!-- .navbar -->\n\n\n\n        <div class="inner-wrap">\n\n\n            <div class="navbar-brand">\n                <h1>\n                <a href="https://www.asx300list.com" title="Constituents, Sectors &amp; Weighting">\n\n                    ASX 300 List\n                </a>\n\n                </h1>\n                                                    <p class="tagline">Constituents, Sectors &amp; Weighting</p>\n                \n            </div><!-- .navbar-brand -->\n\n\n            \n        </div>\n\n\n\n        <nav class="navbar" role="navigation">\n\n\n            <nav class="main-navbar" role="navigation">\n\n                <div class="inner-wrap">\n\n\n                    \n\n\n                    <div class="navbar-header">\n                        \n                           <a class="navbar-toggle" href="#menu-main-slide">\n                               <span class="icon-bar"></span>\n                               <span class="icon-bar"></span>\n                               <span class="icon-bar"></span>\n                           </a>\n\n\n                           <div id="menu-main-slide" class="menu-main-nav-container"><ul id="menu-main-nav" class="menu"><li id="menu-item-9" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-9"><a href="https://www.asx20list.com">ASX 20</a></li>\n<li id="menu-item-10" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-10"><a href="https://www.asx50list.com">ASX 50</a></li>\n<li id="menu-item-11" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-11"><a href="https://www.asx100list.com">ASX 100</a></li>\n<li id="menu-item-12" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-12"><a href="http://www.asx200list.com">ASX 200</a></li>\n<li id="menu-item-13" class="menu-item menu-item-type-custom menu-item-object-custom current-menu-item current_page_item menu-item-home menu-item-13"><a href="https://www.asx300list.com">ASX 300</a></li>\n<li id="menu-item-14" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-14"><a href="https://www.allordslist.com">All Ords</a></li>\n</ul></div>\n                    </div>\n\n\n                    <div id="navbar-main">\n\n                        <div class="menu-main-nav-container"><ul id="menu-main-nav-1" class="nav navbar-nav dropdown sf-menu"><li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-9"><a href="https://www.asx20list.com">ASX 20</a></li>\n<li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-10"><a href="https://www.asx50list.com">ASX 50</a></li>\n<li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-11"><a href="https://www.asx100list.com">ASX 100</a></li>\n<li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-12"><a href="http://www.asx200list.com">ASX 200</a></li>\n<li class="menu-item menu-item-type-custom menu-item-object-custom current-menu-item current_page_item menu-item-home menu-item-13"><a href="https://www.asx300list.com">ASX 300</a></li>\n<li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-14"><a href="https://www.allordslist.com">All Ords</a></li>\n</ul></div>\n\n                    </div><!-- #navbar-main -->\n\n                </div><!-- ./inner-wrap -->\n\n            </nav><!-- .navbar -->\n\n\n            <div class="clear"></div>\n\n\n        </nav><!-- .navbar -->\n\n\n    </header><!-- .site-header -->\n\n    <div class="inner-wrap">\n    <main id="main" class="site-main" role="main">\n\n        \n            <div class="content-area">\n\n                \n<article id="post-16" class="post-16 page type-page status-publish hentry">\n\n    <header class="entry-header">\n\n        <h1 class="entry-title">ASX Top 300 Companies</h1>\n        \n    </header><!-- .entry-header -->\n\n\n    <div class="entry-content">\n        <p class="p1">The S&amp;P/ASX 300 (XKO) Index provides exposure to Australia\xe2\x80\x99s large, mid and small-cap equities.</p>\n<p class="p1">The index consists of all S&amp;P/ASX 200 companies plus 100 smaller-cap companies that have market capitalisations\xe2\x80\x99 above ~$100 million (AUD). The combined market capitalisation represents ~73% <sup>(April 2016)</sup> of Australia\xe2\x80\x99s sharemarket.</p>\n<p class="p1">Investors regularly use the ASX 300 as a benchmark for superannuation portfolios and managed funds due to its exposure to smaller companies.</p>\n<p class="p1">There\xe2\x80\x99s currently one Exchange Traded Funds (ETF) that tracks the performance of the S&amp;P/ASX 300: Vanguard Australian Shares Index (VAS)</p>\n<div class="wpz-sc-box info   "><strong>IMPORTANT</strong><br />\nASX300list.com doesn&#8217;t provide share price data.</p>\n<p><img class="important-img" src="/wp-content/uploads/market-index-icon.png" /><strong>The best website is <a href="http://www.marketindex.com.au">Market Index</a>.</strong><br />\nThey have current ASX share prices, company charts and announcements, dividend data, directors\xe2\x80\x99 transactions and broker consensus.<br />\n</div>\n<p>&nbsp;</p>\n<h2 class="p1"><b>How are ASX 300 companies selected?</b></h2>\n<p class="p1">Constituents are selected by a committee from Standard &amp; Poor\xe2\x80\x99s (S&amp;P) and the Australian Securities Exchange (ASX).</p>\n<p class="p1">All companies listed on the Australian Securities Exchange (ASX) are ranked by market capitalisation. Exchange traded fund (ETFs) and Listed Investment Companies (LICs) are ignored. The top 300 ASX stocks that meet minimum volume and investment benchmarks then become eligible for inclusion in the index.</p>\n<p class="p1">Rebalances are conducted biannually in March and September. If a significant event occurs (e.g. delisting, merger, etc.) an intra-quarter removal may be conducted. Unlike other indices,\xc2\xa0a replacement is not added to the index until the next rebalance date.</p>\n<div class="shortcode-unorderedlist star"></p>\n<ul>\n<li><strong>Skip to the ASX 300: \xc2\xa0</strong>\xc2\xa0<a href="#sector-breakdown">Sector Breakdown</a>\xc2\xa0| <a href="#fundamentals">PE &amp; Yield</a>\xc2\xa0| <a href="#etf">ETF</a></li>\n</ul>\n<p></div>\n\n<p>&nbsp;</p>\n<hr />\n<h2 class="p1"></h2>\n<h2 class="p1"><span id="list" class="s1"><b>ASX 300 List (1 January 2017)</b></span></h2>\n<p>Excel (CSV): <a href="/wp-content/uploads/csv/20170101-asx300.csv">Download</a></p>\n<p>Columns are sortable.</p>\n<table class="tableizer-table sortable">\n<thead>\n<tr class="tableizer-firstrow">\n<th>Code</th>\n<th>Company</th>\n<th>Sector</th>\n<th>Market Cap</th>\n<th>Weight(%)</th>\n</tr>\n</thead>\n<tbody>\n<tr>\n<td>A2M</td>\n<td>The A2 Milk Company Limited NZ</td>\n<td>Consumer Staples</td>\n<td>1,460,370,000</td>\n<td>0.09</td>\n</tr>\n<tr>\n<td>AAC</td>\n<td>Australian Agricultural Company Limited</td>\n<td>Consumer Staples</td>\n<td>947,014,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>AAD</td>\n<td>Ardent Leisure Group Stapled</td>\n<td>Consumer Discretionary</td>\n<td>1,097,680,000</td>\n<td>0.07</td>\n</tr>\n<tr>\n<td>ABC</td>\n<td>Adelaide Brighton Limited</td>\n<td>Materials</td>\n<td>3,527,620,000</td>\n<td>0.21</td>\n</tr>\n<tr>\n<td>ABP</td>\n<td>Abacus Property Group Stapled</td>\n<td>Real Estate</td>\n<td>1,728,420,000</td>\n<td>0.1</td>\n</tr>\n<tr>\n<td>ACX</td>\n<td>Aconex Limited</td>\n<td>Information Technology</td>\n<td>1,003,640,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>ADH</td>\n<td>Adairs Limited</td>\n<td>Consumer Discretionary</td>\n<td>265,400,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>AGI</td>\n<td>Ainsworth Game Technology Limited</td>\n<td>Consumer Discretionary</td>\n<td>698,591,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>AGL</td>\n<td>AGL Energy Limited</td>\n<td>Utilities</td>\n<td>14,851,400,000</td>\n<td>0.89</td>\n</tr>\n<tr>\n<td>AHG</td>\n<td>Automotive Holdings Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,309,910,000</td>\n<td>0.08</td>\n</tr>\n<tr>\n<td>AHY</td>\n<td>Asaleo Care Limited</td>\n<td>Consumer Staples</td>\n<td>821,324,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>AIA</td>\n<td>Auckland International Airport Limited NZX</td>\n<td>Industrials</td>\n<td>7,323,990,000</td>\n<td>0.44</td>\n</tr>\n<tr>\n<td>AJA</td>\n<td>Astro Japan Property Group Forus</td>\n<td>Real Estate</td>\n<td>403,339,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>AJX</td>\n<td>Alexium International Group Limited</td>\n<td>Materials</td>\n<td>184,243,000</td>\n<td>0.01</td>\n</tr>\n<tr>\n<td>ALL</td>\n<td>Aristocrat Leisure Limited</td>\n<td>Consumer Discretionary</td>\n<td>9,897,430,000</td>\n<td>0.59</td>\n</tr>\n<tr>\n<td>ALQ</td>\n<td>Als Limited</td>\n<td>Industrials</td>\n<td>3,045,500,000</td>\n<td>0.18</td>\n</tr>\n<tr>\n<td>ALU</td>\n<td>Altium Limited</td>\n<td>Information Technology</td>\n<td>1,053,450,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>AMA</td>\n<td>AMA Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>466,583,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>AMC</td>\n<td>Amcor Limited</td>\n<td>Materials</td>\n<td>17,314,200,000</td>\n<td>1.04</td>\n</tr>\n<tr>\n<td>AMP</td>\n<td>AMP Limited</td>\n<td>Financials</td>\n<td>14,907,000,000</td>\n<td>0.89</td>\n</tr>\n<tr>\n<td>ANN</td>\n<td>Ansell Limited</td>\n<td>Health Care</td>\n<td>3,643,430,000</td>\n<td>0.22</td>\n</tr>\n<tr>\n<td>ANZ</td>\n<td>Australia And New Zealand Banking Group Limited</td>\n<td>Financials</td>\n<td>89,314,200,000</td>\n<td>5.35</td>\n</tr>\n<tr>\n<td>AOG</td>\n<td>Aveo Group Stapled</td>\n<td>Real Estate</td>\n<td>1,947,480,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>APA</td>\n<td>APA Group Stapled</td>\n<td>Utilities</td>\n<td>9,549,610,000</td>\n<td>0.57</td>\n</tr>\n<tr>\n<td>API</td>\n<td>Australian Pharmaceutical Industries Limited</td>\n<td>Health Care</td>\n<td>1,008,990,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>APN</td>\n<td>APN News &#038; Media Limited</td>\n<td>Consumer Discretionary</td>\n<td>873,284,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>APO</td>\n<td>Apn Outdoor Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>984,692,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>AQG</td>\n<td>Alacer Gold Corp Cdi 1:1</td>\n<td>Materials</td>\n<td>195,595,000</td>\n<td>0.01</td>\n</tr>\n<tr>\n<td>ARB</td>\n<td>ARB Corporation Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,397,600,000</td>\n<td>0.08</td>\n</tr>\n<tr>\n<td>ARF</td>\n<td>Arena Reit Stapled</td>\n<td>Real Estate</td>\n<td>436,886,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>ASB</td>\n<td>Austal Limited</td>\n<td>Industrials</td>\n<td>607,433,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>AST</td>\n<td>Ausnet Services Limited</td>\n<td>Utilities</td>\n<td>5,692,980,000</td>\n<td>0.34</td>\n</tr>\n<tr>\n<td>ASX</td>\n<td>ASX Limited</td>\n<td>Financials</td>\n<td>9,629,420,000</td>\n<td>0.58</td>\n</tr>\n<tr>\n<td>AVN</td>\n<td>Aventus Retail Property Fund Unit</td>\n<td>Real Estate</td>\n<td>930,532,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>AWC</td>\n<td>Alumina Limited</td>\n<td>Materials</td>\n<td>5,270,110,000</td>\n<td>0.32</td>\n</tr>\n<tr>\n<td>AWE</td>\n<td>AWE Limited</td>\n<td>Energy</td>\n<td>327,457,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>AYS</td>\n<td>Amaysim Australia Limited</td>\n<td>Telecommunication Services</td>\n<td>365,136,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>AZJ</td>\n<td>Aurizon Holdings Limited</td>\n<td>Industrials</td>\n<td>10,361,300,000</td>\n<td>0.62</td>\n</tr>\n<tr>\n<td>BAL</td>\n<td>Bellamy&#8217;s Australia Limited</td>\n<td>Consumer Staples</td>\n<td>645,866,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>BAP</td>\n<td>Bapcor Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,644,680,000</td>\n<td>0.1</td>\n</tr>\n<tr>\n<td>BBN</td>\n<td>Baby Bunting Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>305,501,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>BDR</td>\n<td>Beadell Resources Limited</td>\n<td>Materials</td>\n<td>285,543,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>BEN</td>\n<td>Bendigo And Adelaide Bank Limited</td>\n<td>Financials</td>\n<td>6,007,070,000</td>\n<td>0.36</td>\n</tr>\n<tr>\n<td>BGA</td>\n<td>Bega Cheese Limited</td>\n<td>Consumer Staples</td>\n<td>647,036,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>BHP</td>\n<td>BHP Billiton Limited</td>\n<td>Materials</td>\n<td>80,485,000,000</td>\n<td>4.82</td>\n</tr>\n<tr>\n<td>BKL</td>\n<td>Blackmores Limited</td>\n<td>Consumer Staples</td>\n<td>1,780,460,000</td>\n<td>0.11</td>\n</tr>\n<tr>\n<td>BKW</td>\n<td>Brickworks Limited</td>\n<td>Materials</td>\n<td>2,026,350,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>BLA</td>\n<td>Blue SKY Alternative Investments Limited</td>\n<td>Financials</td>\n<td>471,915,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>BLD</td>\n<td>Boral Limited</td>\n<td>Materials</td>\n<td>6,342,320,000</td>\n<td>0.38</td>\n</tr>\n<tr>\n<td>BOQ</td>\n<td>Bank of Queensland Limited</td>\n<td>Financials</td>\n<td>4,597,540,000</td>\n<td>0.28</td>\n</tr>\n<tr>\n<td>BPT</td>\n<td>Beach Energy Limited</td>\n<td>Energy</td>\n<td>1,585,330,000</td>\n<td>0.09</td>\n</tr>\n<tr>\n<td>BRG</td>\n<td>Breville Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,126,630,000</td>\n<td>0.07</td>\n</tr>\n<tr>\n<td>BSL</td>\n<td>Bluescope Steel Limited</td>\n<td>Materials</td>\n<td>5,325,730,000</td>\n<td>0.32</td>\n</tr>\n<tr>\n<td>BTT</td>\n<td>BT Investment Management Limited</td>\n<td>Financials</td>\n<td>3,303,480,000</td>\n<td>0.2</td>\n</tr>\n<tr>\n<td>BWP</td>\n<td>BWP Trust Ord Units</td>\n<td>Real Estate</td>\n<td>1,920,730,000</td>\n<td>0.11</td>\n</tr>\n<tr>\n<td>BWX</td>\n<td>BWX Limited</td>\n<td>Consumer Staples</td>\n<td>373,799,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>BXB</td>\n<td>Brambles Limited</td>\n<td>Industrials</td>\n<td>19,696,700,000</td>\n<td>1.18</td>\n</tr>\n<tr>\n<td>CAB</td>\n<td>Cabcharge Australia Limited</td>\n<td>Industrials</td>\n<td>467,271,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>CAR</td>\n<td>Carsales.com Limited</td>\n<td>Information Technology</td>\n<td>2,740,040,000</td>\n<td>0.16</td>\n</tr>\n<tr>\n<td>CBA</td>\n<td>Commonwealth Bank of Australia</td>\n<td>Financials</td>\n<td>142,007,000,000</td>\n<td>8.5</td>\n</tr>\n<tr>\n<td>CCL</td>\n<td>Coca-cola Amatil Limited</td>\n<td>Consumer Staples</td>\n<td>7,727,530,000</td>\n<td>0.46</td>\n</tr>\n<tr>\n<td>CCP</td>\n<td>Credit Corp Group Limited</td>\n<td>Financials</td>\n<td>849,522,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>CCV</td>\n<td>Cash Converters International</td>\n<td>Consumer Discretionary</td>\n<td>165,171,000</td>\n<td>0.01</td>\n</tr>\n<tr>\n<td>CDD</td>\n<td>Cardno Limited</td>\n<td>Industrials</td>\n<td>453,212,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>CGC</td>\n<td>Costa Group Holdings Limited</td>\n<td>Consumer Staples</td>\n<td>1,097,640,000</td>\n<td>0.07</td>\n</tr>\n<tr>\n<td>CGF</td>\n<td>Challenger Limited</td>\n<td>Financials</td>\n<td>6,425,600,000</td>\n<td>0.38</td>\n</tr>\n<tr>\n<td>CHC</td>\n<td>Charter Hall Group Forus</td>\n<td>Real Estate</td>\n<td>1,956,280,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>CIM</td>\n<td>Cimic Group Limited</td>\n<td>Industrials</td>\n<td>11,329,400,000</td>\n<td>0.68</td>\n</tr>\n<tr>\n<td>CKF</td>\n<td>Collins Foods Limited</td>\n<td>Consumer Discretionary</td>\n<td>629,886,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>CL1</td>\n<td>Class Limited</td>\n<td>Information Technology</td>\n<td>334,165,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>CMW</td>\n<td>Cromwell Property Group Stapled</td>\n<td>Real Estate</td>\n<td>1,732,510,000</td>\n<td>0.1</td>\n</tr>\n<tr>\n<td>CNU</td>\n<td>Chorus Limited NZX</td>\n<td>Telecommunication Services</td>\n<td>1,558,770,000</td>\n<td>0.09</td>\n</tr>\n<tr>\n<td>COH</td>\n<td>Cochlear Limited</td>\n<td>Health Care</td>\n<td>7,037,640,000</td>\n<td>0.42</td>\n</tr>\n<tr>\n<td>CPU</td>\n<td>Computershare Limited</td>\n<td>Information Technology</td>\n<td>6,807,220,000</td>\n<td>0.41</td>\n</tr>\n<tr>\n<td>CQR</td>\n<td>Charter Hall Retail Reit Unit</td>\n<td>Real Estate</td>\n<td>1,718,180,000</td>\n<td>0.1</td>\n</tr>\n<tr>\n<td>CSL</td>\n<td>CSL Limited</td>\n<td>Health Care</td>\n<td>45,783,800,000</td>\n<td>2.74</td>\n</tr>\n<tr>\n<td>CSR</td>\n<td>CSR Limited</td>\n<td>Materials</td>\n<td>2,330,700,000</td>\n<td>0.14</td>\n</tr>\n<tr>\n<td>CSV</td>\n<td>CSG Limited</td>\n<td>Information Technology</td>\n<td>233,404,000</td>\n<td>0.01</td>\n</tr>\n<tr>\n<td>CTD</td>\n<td>Corporate Travel Management Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,823,200,000</td>\n<td>0.11</td>\n</tr>\n<tr>\n<td>CTX</td>\n<td>Caltex Australia Limited</td>\n<td>Energy</td>\n<td>7,944,290,000</td>\n<td>0.48</td>\n</tr>\n<tr>\n<td>CVO</td>\n<td>Cover-more Group Limited</td>\n<td>Financials</td>\n<td>731,311,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>CWN</td>\n<td>Crown Resorts Limited</td>\n<td>Consumer Discretionary</td>\n<td>8,434,800,000</td>\n<td>0.51</td>\n</tr>\n<tr>\n<td>CWP</td>\n<td>Cedar Woods Properties Limited</td>\n<td>Real Estate</td>\n<td>398,403,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>CWY</td>\n<td>Cleanaway Waste Management Limited</td>\n<td>Industrials</td>\n<td>1,956,840,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>CYB</td>\n<td>CYBG PLC Cdi 1:1</td>\n<td>Financials</td>\n<td>3,596,910,000</td>\n<td>0.22</td>\n</tr>\n<tr>\n<td>DCN</td>\n<td>Dacian Gold Limited</td>\n<td>Materials</td>\n<td>301,351,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>DLX</td>\n<td>Duluxgroup Limited</td>\n<td>Materials</td>\n<td>2,428,920,000</td>\n<td>0.15</td>\n</tr>\n<tr>\n<td>DMP</td>\n<td>Domino&#8217;s Pizza Enterprises Limited</td>\n<td>Consumer Discretionary</td>\n<td>5,773,160,000</td>\n<td>0.35</td>\n</tr>\n<tr>\n<td>DNA</td>\n<td>Donaco International Limited</td>\n<td>Consumer Discretionary</td>\n<td>303,392,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>DOW</td>\n<td>Downer Edi Limited</td>\n<td>Industrials</td>\n<td>2,586,940,000</td>\n<td>0.15</td>\n</tr>\n<tr>\n<td>DRM</td>\n<td>Doray Minerals Limited</td>\n<td>Materials</td>\n<td>153,476,000</td>\n<td>0.01</td>\n</tr>\n<tr>\n<td>DUE</td>\n<td>Duet Group Forus</td>\n<td>Utilities</td>\n<td>6,666,540,000</td>\n<td>0.4</td>\n</tr>\n<tr>\n<td>DXS</td>\n<td>Dexus Property Group Stapled</td>\n<td>Real Estate</td>\n<td>9,311,660,000</td>\n<td>0.56</td>\n</tr>\n<tr>\n<td>ECX</td>\n<td>Eclipx Group Limited</td>\n<td>Financials</td>\n<td>991,813,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>EHE</td>\n<td>Estia Health Limited</td>\n<td>Health Care</td>\n<td>594,709,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>ELD</td>\n<td>Elders Limited</td>\n<td>Consumer Staples</td>\n<td>452,022,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>EML</td>\n<td>EML Payments Limited</td>\n<td>Financials</td>\n<td>448,920,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>EPW</td>\n<td>Erm Power Limited</td>\n<td>Utilities</td>\n<td>323,986,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>EQT</td>\n<td>EQT Holdings Limited</td>\n<td>Financials</td>\n<td>350,966,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>EVN</td>\n<td>Evolution Mining Limited</td>\n<td>Materials</td>\n<td>3,561,030,000</td>\n<td>0.21</td>\n</tr>\n<tr>\n<td>EWC</td>\n<td>Energy World Corporation LTD</td>\n<td>Utilities</td>\n<td>450,883,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>FAR</td>\n<td>FAR Limited</td>\n<td>Energy</td>\n<td>334,615,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>FBU</td>\n<td>Fletcher Building Limited NZX</td>\n<td>Materials</td>\n<td>7,168,870,000</td>\n<td>0.43</td>\n</tr>\n<tr>\n<td>FET</td>\n<td>Folkestone Education Trust Unit</td>\n<td>Real Estate</td>\n<td>633,272,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>FLT</td>\n<td>Flight Centre Travel Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>3,160,500,000</td>\n<td>0.19</td>\n</tr>\n<tr>\n<td>FMG</td>\n<td>Fortescue Metals Group LTD</td>\n<td>Materials</td>\n<td>18,340,300,000</td>\n<td>1.1</td>\n</tr>\n<tr>\n<td>FNP</td>\n<td>Freedom Foods Group Limited</td>\n<td>Consumer Staples</td>\n<td>865,644,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>FPH</td>\n<td>Fisher &#038; Paykel Healthcare Corporation Limited NZX</td>\n<td>Health Care</td>\n<td>4,647,370,000</td>\n<td>0.28</td>\n</tr>\n<tr>\n<td>FSF</td>\n<td>Fonterra Shareholders&#8217; Fund Unit NZX</td>\n<td>Consumer Staples</td>\n<td>697,194,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>FXJ</td>\n<td>Fairfax Media Limited</td>\n<td>Consumer Discretionary</td>\n<td>2,046,530,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>FXL</td>\n<td>Flexigroup Limited</td>\n<td>Financials</td>\n<td>841,515,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>GBT</td>\n<td>GBST Holdings Limited</td>\n<td>Information Technology</td>\n<td>255,150,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>GDI</td>\n<td>GDI Property Group Stapled</td>\n<td>Real Estate</td>\n<td>533,431,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>GEM</td>\n<td>G8 Education Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,373,220,000</td>\n<td>0.08</td>\n</tr>\n<tr>\n<td>GHC</td>\n<td>Generation Healthcare Reit Units</td>\n<td>Real Estate</td>\n<td>421,122,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>GMA</td>\n<td>Genworth Mortgage Insurance Australia Limited</td>\n<td>Financials</td>\n<td>1,665,620,000</td>\n<td>0.1</td>\n</tr>\n<tr>\n<td>GMG</td>\n<td>Goodman Group Stapled</td>\n<td>Real Estate</td>\n<td>12,756,400,000</td>\n<td>0.76</td>\n</tr>\n<tr>\n<td>GNC</td>\n<td>Graincorp Limited</td>\n<td>Consumer Staples</td>\n<td>2,187,860,000</td>\n<td>0.13</td>\n</tr>\n<tr>\n<td>GOR</td>\n<td>Gold Road Resources Limited</td>\n<td>Materials</td>\n<td>500,853,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>GOZ</td>\n<td>Growthpoint Properties Australia Stapled</td>\n<td>Real Estate</td>\n<td>2,103,870,000</td>\n<td>0.13</td>\n</tr>\n<tr>\n<td>GPT</td>\n<td>GPT Group Stapled</td>\n<td>Real Estate</td>\n<td>9,043,720,000</td>\n<td>0.54</td>\n</tr>\n<tr>\n<td>GTY</td>\n<td>Gateway Lifestyle Group Stapled</td>\n<td>Real Estate</td>\n<td>646,699,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>GUD</td>\n<td>G.u.d. Holdings Limited</td>\n<td>Consumer Discretionary</td>\n<td>897,693,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>GWA</td>\n<td>GWA Group Limited</td>\n<td>Industrials</td>\n<td>781,285,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>GXL</td>\n<td>Greencross Limited</td>\n<td>Consumer Discretionary</td>\n<td>796,804,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>GXY</td>\n<td>Galaxy Resources Limited</td>\n<td>Materials</td>\n<td>962,087,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>HFA</td>\n<td>HFA Holdings Limited</td>\n<td>Financials</td>\n<td>389,155,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>HFR</td>\n<td>Highfield Resources Limited</td>\n<td>Materials</td>\n<td>427,495,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>HGG</td>\n<td>Henderson Group PLC Cdi 1:1</td>\n<td>Financials</td>\n<td>2,875,710,000</td>\n<td>0.17</td>\n</tr>\n<tr>\n<td>HPI</td>\n<td>Hotel Property Investments Stapled</td>\n<td>Real Estate</td>\n<td>414,939,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>HSN</td>\n<td>Hansen Technologies Limited</td>\n<td>Information Technology</td>\n<td>712,165,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>HSO</td>\n<td>Healthscope Limited</td>\n<td>Health Care</td>\n<td>3,973,360,000</td>\n<td>0.24</td>\n</tr>\n<tr>\n<td>HVN</td>\n<td>Harvey Norman Holdings Limited</td>\n<td>Consumer Discretionary</td>\n<td>5,718,530,000</td>\n<td>0.34</td>\n</tr>\n<tr>\n<td>IAG</td>\n<td>Insurance Australia Group Limited</td>\n<td>Financials</td>\n<td>14,181,500,000</td>\n<td>0.85</td>\n</tr>\n<tr>\n<td>IDR</td>\n<td>Industria Reit Stapled</td>\n<td>Real Estate</td>\n<td>342,539,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>IEL</td>\n<td>Idp Education Limited</td>\n<td>Consumer Discretionary</td>\n<td>998,677,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>IFL</td>\n<td>Ioof Holdings Limited</td>\n<td>Financials</td>\n<td>2,764,230,000</td>\n<td>0.17</td>\n</tr>\n<tr>\n<td>IFM</td>\n<td>Infomedia LTD</td>\n<td>Information Technology</td>\n<td>226,901,000</td>\n<td>0.01</td>\n</tr>\n<tr>\n<td>IFN</td>\n<td>Infigen Energy Stapled</td>\n<td>Utilities</td>\n<td>702,520,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>IGO</td>\n<td>Independence Group NL</td>\n<td>Materials</td>\n<td>2,534,540,000</td>\n<td>0.15</td>\n</tr>\n<tr>\n<td>ILU</td>\n<td>Iluka Resources Limited</td>\n<td>Materials</td>\n<td>3,043,950,000</td>\n<td>0.18</td>\n</tr>\n<tr>\n<td>IMF</td>\n<td>IMF Bentham Limited</td>\n<td>Financials</td>\n<td>299,584,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>INA</td>\n<td>Ingenia Communities Group Stapled</td>\n<td>Real Estate</td>\n<td>476,268,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>INM</td>\n<td>Iron Mountain Incorporated Cdi 1:1</td>\n<td>Real Estate</td>\n<td>2,146,340,000</td>\n<td>0.13</td>\n</tr>\n<tr>\n<td>IOF</td>\n<td>Investa Office Fund Stapled</td>\n<td>Real Estate</td>\n<td>2,898,300,000</td>\n<td>0.17</td>\n</tr>\n<tr>\n<td>IPD</td>\n<td>Impedimed Limited</td>\n<td>Health Care</td>\n<td>386,258,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>IPH</td>\n<td>IPH Limited</td>\n<td>Industrials</td>\n<td>980,110,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>IPL</td>\n<td>Incitec Pivot Limited</td>\n<td>Materials</td>\n<td>6,073,810,000</td>\n<td>0.36</td>\n</tr>\n<tr>\n<td>IRE</td>\n<td>Iress Limited</td>\n<td>Information Technology</td>\n<td>2,017,390,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>ISD</td>\n<td>Isentia Group Limited</td>\n<td>Information Technology</td>\n<td>574,000,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>ISU</td>\n<td>Iselect Limited</td>\n<td>Consumer Discretionary</td>\n<td>439,875,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>IVC</td>\n<td>Invocare Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,526,120,000</td>\n<td>0.09</td>\n</tr>\n<tr>\n<td>JBH</td>\n<td>JB Hi-fi Limited</td>\n<td>Consumer Discretionary</td>\n<td>3,206,810,000</td>\n<td>0.19</td>\n</tr>\n<tr>\n<td>JHC</td>\n<td>Japara Healthcare Limited</td>\n<td>Health Care</td>\n<td>599,216,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>JHX</td>\n<td>James Hardie Industries PLC Cdi 1:1</td>\n<td>Materials</td>\n<td>9,685,290,000</td>\n<td>0.58</td>\n</tr>\n<tr>\n<td>KAR</td>\n<td>Karoon Gas Australia Limited</td>\n<td>Energy</td>\n<td>441,229,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>KMD</td>\n<td>Kathmandu Holdings Limited</td>\n<td>Consumer Discretionary</td>\n<td>375,769,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>LLC</td>\n<td>Lendlease Group Stapled</td>\n<td>Real Estate</td>\n<td>8,523,310,000</td>\n<td>0.51</td>\n</tr>\n<tr>\n<td>LNG</td>\n<td>Liquefied Natural Gas Limited</td>\n<td>Energy</td>\n<td>345,619,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>LNK</td>\n<td>Link Administration Holdings Limited</td>\n<td>Information Technology</td>\n<td>2,723,670,000</td>\n<td>0.16</td>\n</tr>\n<tr>\n<td>LYC</td>\n<td>Lynas Corporation Limited</td>\n<td>Materials</td>\n<td>257,026,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>MFG</td>\n<td>Magellan Financial Group Limited</td>\n<td>Financials</td>\n<td>4,090,260,000</td>\n<td>0.24</td>\n</tr>\n<tr>\n<td>MGC</td>\n<td>MG Unit Trust Units</td>\n<td>Consumer Staples</td>\n<td>189,497,000</td>\n<td>0.01</td>\n</tr>\n<tr>\n<td>MGR</td>\n<td>Mirvac Group Stapled</td>\n<td>Real Estate</td>\n<td>7,891,890,000</td>\n<td>0.47</td>\n</tr>\n<tr>\n<td>MIN</td>\n<td>Mineral Resources Limited</td>\n<td>Materials</td>\n<td>2,266,880,000</td>\n<td>0.14</td>\n</tr>\n<tr>\n<td>MLD</td>\n<td>Maca Limited</td>\n<td>Materials</td>\n<td>401,899,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>MLX</td>\n<td>Metals X Limited</td>\n<td>Materials</td>\n<td>341,231,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>MMS</td>\n<td>Mcmillan Shakespeare Limited</td>\n<td>Industrials</td>\n<td>904,435,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>MND</td>\n<td>Monadelphous Group Limited</td>\n<td>Industrials</td>\n<td>1,053,870,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>MNS</td>\n<td>Magnis Resources Limited</td>\n<td>Materials</td>\n<td>339,749,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>MOC</td>\n<td>Mortgage Choice Limited</td>\n<td>Financials</td>\n<td>298,651,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>MPL</td>\n<td>Medibank Private Limited</td>\n<td>Financials</td>\n<td>7,766,290,000</td>\n<td>0.46</td>\n</tr>\n<tr>\n<td>MQA</td>\n<td>Macquarie Atlas Roads Group Stapled</td>\n<td>Industrials</td>\n<td>2,677,160,000</td>\n<td>0.16</td>\n</tr>\n<tr>\n<td>MQG</td>\n<td>Macquarie Group Limited</td>\n<td>Financials</td>\n<td>29,651,400,000</td>\n<td>1.78</td>\n</tr>\n<tr>\n<td>MSB</td>\n<td>Mesoblast Limited</td>\n<td>Health Care</td>\n<td>545,765,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>MTR</td>\n<td>Mantra Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>915,396,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>MTS</td>\n<td>Metcash Limited</td>\n<td>Consumer Staples</td>\n<td>2,224,460,000</td>\n<td>0.13</td>\n</tr>\n<tr>\n<td>MVF</td>\n<td>Monash Ivf Group Limited</td>\n<td>Health Care</td>\n<td>482,561,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>MYO</td>\n<td>Myob Group Limited</td>\n<td>Information Technology</td>\n<td>2,193,740,000</td>\n<td>0.13</td>\n</tr>\n<tr>\n<td>MYR</td>\n<td>Myer Holdings Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,133,360,000</td>\n<td>0.07</td>\n</tr>\n<tr>\n<td>MYX</td>\n<td>Mayne Pharma Group Limited</td>\n<td>Health Care</td>\n<td>2,016,060,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>NAB</td>\n<td>National Australia Bank Limited</td>\n<td>Financials</td>\n<td>81,896,800,000</td>\n<td>4.9</td>\n</tr>\n<tr>\n<td>NAN</td>\n<td>Nanosonics Limited</td>\n<td>Health Care</td>\n<td>925,950,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>NCM</td>\n<td>Newcrest Mining Limited</td>\n<td>Materials</td>\n<td>15,526,400,000</td>\n<td>0.93</td>\n</tr>\n<tr>\n<td>NEC</td>\n<td>Nine Entertainment Co. Holdings Limited</td>\n<td>Consumer Discretionary</td>\n<td>928,012,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>NHF</td>\n<td>Nib Holdings Limited</td>\n<td>Financials</td>\n<td>2,085,270,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>NSR</td>\n<td>National Storage Reit Stapled</td>\n<td>Real Estate</td>\n<td>752,272,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>NST</td>\n<td>Northern Star Resources LTD</td>\n<td>Materials</td>\n<td>2,173,960,000</td>\n<td>0.13</td>\n</tr>\n<tr>\n<td>NTC</td>\n<td>Netcomm Wireless Limited</td>\n<td>Information Technology</td>\n<td>314,609,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>NUF</td>\n<td>Nufarm Limited</td>\n<td>Materials</td>\n<td>2,443,350,000</td>\n<td>0.15</td>\n</tr>\n<tr>\n<td>NVT</td>\n<td>Navitas Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,809,900,000</td>\n<td>0.11</td>\n</tr>\n<tr>\n<td>NWS</td>\n<td>News Corporation. B Voting</td>\n<td>Consumer Discretionary</td>\n<td>713,820,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>NXT</td>\n<td>Nextdc Limited</td>\n<td>Information Technology</td>\n<td>1,034,020,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>OFX</td>\n<td>OFX Group Limited</td>\n<td>Financials</td>\n<td>403,200,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>OGC</td>\n<td>Oceanagold Corporation Cdi 1:1</td>\n<td>Materials</td>\n<td>2,566,080,000</td>\n<td>0.15</td>\n</tr>\n<tr>\n<td>OML</td>\n<td>Ooh!media Limited</td>\n<td>Consumer Discretionary</td>\n<td>750,111,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>ORA</td>\n<td>Orora Limited</td>\n<td>Materials</td>\n<td>3,607,990,000</td>\n<td>0.22</td>\n</tr>\n<tr>\n<td>ORE</td>\n<td>Orocobre Limited</td>\n<td>Materials</td>\n<td>952,752,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>ORG</td>\n<td>Origin Energy Limited</td>\n<td>Energy</td>\n<td>11,564,700,000</td>\n<td>0.69</td>\n</tr>\n<tr>\n<td>ORI</td>\n<td>Orica Limited</td>\n<td>Materials</td>\n<td>6,650,790,000</td>\n<td>0.4</td>\n</tr>\n<tr>\n<td>OSH</td>\n<td>Oil Search Limited 10T</td>\n<td>Energy</td>\n<td>10,917,700,000</td>\n<td>0.65</td>\n</tr>\n<tr>\n<td>OZL</td>\n<td>Oz Minerals Limited</td>\n<td>Materials</td>\n<td>2,394,380,000</td>\n<td>0.14</td>\n</tr>\n<tr>\n<td>PDN</td>\n<td>Paladin Energy LTD</td>\n<td>Energy</td>\n<td>147,305,000</td>\n<td>0.01</td>\n</tr>\n<tr>\n<td>PGH</td>\n<td>Pact Group Holdings LTD</td>\n<td>Materials</td>\n<td>2,019,830,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>PLS</td>\n<td>Pilbara Minerals Limited</td>\n<td>Materials</td>\n<td>631,223,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>PMV</td>\n<td>Premier Investments Limited</td>\n<td>Consumer Discretionary</td>\n<td>2,273,320,000</td>\n<td>0.14</td>\n</tr>\n<tr>\n<td>PPT</td>\n<td>Perpetual Limited</td>\n<td>Financials</td>\n<td>2,270,970,000</td>\n<td>0.14</td>\n</tr>\n<tr>\n<td>PRG</td>\n<td>Programmed Maintenance Services Limited</td>\n<td>Industrials</td>\n<td>495,320,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>PRU</td>\n<td>Perseus Mining Limited</td>\n<td>Materials</td>\n<td>345,659,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>PRY</td>\n<td>Primary Health Care Limited</td>\n<td>Health Care</td>\n<td>2,127,450,000</td>\n<td>0.13</td>\n</tr>\n<tr>\n<td>PTM</td>\n<td>Platinum Asset Management Limited</td>\n<td>Financials</td>\n<td>3,097,660,000</td>\n<td>0.19</td>\n</tr>\n<tr>\n<td>QAN</td>\n<td>Qantas Airways Limited</td>\n<td>Industrials</td>\n<td>6,154,980,000</td>\n<td>0.37</td>\n</tr>\n<tr>\n<td>QBE</td>\n<td>QBE Insurance Group Limited</td>\n<td>Financials</td>\n<td>17,035,200,000</td>\n<td>1.02</td>\n</tr>\n<tr>\n<td>QUB</td>\n<td>Qube Holdings Limited</td>\n<td>Industrials</td>\n<td>3,542,670,000</td>\n<td>0.21</td>\n</tr>\n<tr>\n<td>RCG</td>\n<td>RCG Corporation Limited</td>\n<td>Consumer Discretionary</td>\n<td>803,817,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>RCR</td>\n<td>RCR Tomlinson Limited</td>\n<td>Industrials</td>\n<td>384,899,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>REA</td>\n<td>REA Group LTD</td>\n<td>Consumer Discretionary</td>\n<td>7,274,600,000</td>\n<td>0.44</td>\n</tr>\n<tr>\n<td>REG</td>\n<td>Regis Healthcare Limited</td>\n<td>Health Care</td>\n<td>1,375,640,000</td>\n<td>0.08</td>\n</tr>\n<tr>\n<td>RFF</td>\n<td>Rural Funds Group Stapled</td>\n<td>Real Estate</td>\n<td>361,802,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>RFG</td>\n<td>Retail Food Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,235,900,000</td>\n<td>0.07</td>\n</tr>\n<tr>\n<td>RHC</td>\n<td>Ramsay Health Care Limited</td>\n<td>Health Care</td>\n<td>13,802,100,000</td>\n<td>0.83</td>\n</tr>\n<tr>\n<td>RIC</td>\n<td>Ridley Corporation Limited</td>\n<td>Consumer Staples</td>\n<td>384,771,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>RIO</td>\n<td>RIO Tinto Limited</td>\n<td>Materials</td>\n<td>25,409,100,000</td>\n<td>1.52</td>\n</tr>\n<tr>\n<td>RMD</td>\n<td>Resmed Inc Cdi 10:1</td>\n<td>Health Care</td>\n<td>12,088,200,000</td>\n<td>0.72</td>\n</tr>\n<tr>\n<td>RRL</td>\n<td>Regis Resources Limited</td>\n<td>Materials</td>\n<td>1,487,950,000</td>\n<td>0.09</td>\n</tr>\n<tr>\n<td>RSG</td>\n<td>Resolute Mining Limited</td>\n<td>Materials</td>\n<td>958,078,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>RWC</td>\n<td>Reliance Worldwide Corporation Limited</td>\n<td>Industrials</td>\n<td>1,680,000,000</td>\n<td>0.1</td>\n</tr>\n<tr>\n<td>S32</td>\n<td>SOUTH32 Limited</td>\n<td>Materials</td>\n<td>14,640,300,000</td>\n<td>0.88</td>\n</tr>\n<tr>\n<td>SAR</td>\n<td>Saracen Mineral Holdings Limited</td>\n<td>Materials</td>\n<td>799,048,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>SBM</td>\n<td>ST Barbara Limited</td>\n<td>Materials</td>\n<td>1,014,560,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>SCG</td>\n<td>Scentre Group Stapled</td>\n<td>Real Estate</td>\n<td>24,704,700,000</td>\n<td>1.48</td>\n</tr>\n<tr>\n<td>SCP</td>\n<td>Shopping Centres Australasia Property Group Stapled</td>\n<td>Real Estate</td>\n<td>1,622,440,000</td>\n<td>0.1</td>\n</tr>\n<tr>\n<td>SDA</td>\n<td>Speedcast International Limited</td>\n<td>Telecommunication Services</td>\n<td>831,140,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>SDF</td>\n<td>Steadfast Group Limited</td>\n<td>Financials</td>\n<td>1,656,950,000</td>\n<td>0.1</td>\n</tr>\n<tr>\n<td>SEH</td>\n<td>Sino Gas &#038; Energy Holdings Limited</td>\n<td>Energy</td>\n<td>238,553,000</td>\n<td>0.01</td>\n</tr>\n<tr>\n<td>SEK</td>\n<td>Seek Limited</td>\n<td>Industrials</td>\n<td>5,175,350,000</td>\n<td>0.31</td>\n</tr>\n<tr>\n<td>SFR</td>\n<td>Sandfire Resources NL</td>\n<td>Materials</td>\n<td>889,630,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>SGF</td>\n<td>SG Fleet Group Limited</td>\n<td>Industrials</td>\n<td>842,593,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>SGM</td>\n<td>Sims Metal Management Limited</td>\n<td>Materials</td>\n<td>2,533,180,000</td>\n<td>0.15</td>\n</tr>\n<tr>\n<td>SGP</td>\n<td>Stockland Stapled</td>\n<td>Real Estate</td>\n<td>11,015,100,000</td>\n<td>0.66</td>\n</tr>\n<tr>\n<td>SGR</td>\n<td>The Star Entertainment Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>4,268,730,000</td>\n<td>0.26</td>\n</tr>\n<tr>\n<td>SHL</td>\n<td>Sonic Healthcare Limited</td>\n<td>Health Care</td>\n<td>8,908,830,000</td>\n<td>0.53</td>\n</tr>\n<tr>\n<td>SHV</td>\n<td>Select Harvests Limited</td>\n<td>Consumer Staples</td>\n<td>487,950,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>SIP</td>\n<td>Sigma Pharmaceuticals Limited</td>\n<td>Health Care</td>\n<td>1,390,650,000</td>\n<td>0.08</td>\n</tr>\n<tr>\n<td>SIQ</td>\n<td>Smartgroup Corporation LTD</td>\n<td>Industrials</td>\n<td>762,939,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>SIV</td>\n<td>Silver Chef Limited</td>\n<td>Industrials</td>\n<td>319,297,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>SKC</td>\n<td>Skycity Entertainment Group Limited NZX</td>\n<td>Consumer Discretionary</td>\n<td>2,486,980,000</td>\n<td>0.15</td>\n</tr>\n<tr>\n<td>SKI</td>\n<td>Spark Infrastructure Group Forus</td>\n<td>Utilities</td>\n<td>4,003,190,000</td>\n<td>0.24</td>\n</tr>\n<tr>\n<td>SKT</td>\n<td>SKY Network Television Limited NZ</td>\n<td>Consumer Discretionary</td>\n<td>1,723,890,000</td>\n<td>0.1</td>\n</tr>\n<tr>\n<td>SLK</td>\n<td>Sealink Travel Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>464,297,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>SPK</td>\n<td>Spark New Zealand Limited NZX</td>\n<td>Telecommunication Services</td>\n<td>6,029,170,000</td>\n<td>0.36</td>\n</tr>\n<tr>\n<td>SPL</td>\n<td>Starpharma Holdings Limited</td>\n<td>Health Care</td>\n<td>267,189,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>SPO</td>\n<td>Spotless Group Holdings Limited</td>\n<td>Industrials</td>\n<td>1,087,310,000</td>\n<td>0.07</td>\n</tr>\n<tr>\n<td>SRX</td>\n<td>Sirtex Medical Limited</td>\n<td>Health Care</td>\n<td>817,559,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>SSM</td>\n<td>Service Stream Limited</td>\n<td>Industrials</td>\n<td>401,708,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>STO</td>\n<td>Santos Limited</td>\n<td>Energy</td>\n<td>8,168,810,000</td>\n<td>0.49</td>\n</tr>\n<tr>\n<td>SUL</td>\n<td>Super Retail Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>2,041,430,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>SUN</td>\n<td>Suncorp Group Limited</td>\n<td>Financials</td>\n<td>17,443,500,000</td>\n<td>1.04</td>\n</tr>\n<tr>\n<td>SVW</td>\n<td>Seven Group Holdings Limited</td>\n<td>Industrials</td>\n<td>2,204,930,000</td>\n<td>0.13</td>\n</tr>\n<tr>\n<td>SWM</td>\n<td>Seven West Media Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,213,970,000</td>\n<td>0.07</td>\n</tr>\n<tr>\n<td>SXL</td>\n<td>Southern Cross Media Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,188,130,000</td>\n<td>0.07</td>\n</tr>\n<tr>\n<td>SXY</td>\n<td>Senex Energy Limited</td>\n<td>Energy</td>\n<td>305,906,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>SYD</td>\n<td>Sydney Airport Forus</td>\n<td>Industrials</td>\n<td>13,476,500,000</td>\n<td>0.81</td>\n</tr>\n<tr>\n<td>SYR</td>\n<td>Syrah Resources Limited</td>\n<td>Materials</td>\n<td>804,460,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>TAH</td>\n<td>Tabcorp Holdings Limited</td>\n<td>Consumer Discretionary</td>\n<td>4,017,630,000</td>\n<td>0.24</td>\n</tr>\n<tr>\n<td>TCL</td>\n<td>Transurban Group Stapled</td>\n<td>Industrials</td>\n<td>21,081,100,000</td>\n<td>1.26</td>\n</tr>\n<tr>\n<td>TEN</td>\n<td>TEN Network Holdings Limited</td>\n<td>Consumer Discretionary</td>\n<td>334,995,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>TFC</td>\n<td>TFS Corporation Limited</td>\n<td>Materials</td>\n<td>647,732,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>TGA</td>\n<td>Thorn Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>300,588,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>TGR</td>\n<td>Tassal Group Limited</td>\n<td>Consumer Staples</td>\n<td>623,669,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>TIX</td>\n<td>360 Capital Industrial Fund Ord Unit</td>\n<td>Real Estate</td>\n<td>532,013,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>TLS</td>\n<td>Telstra Corporation Limited</td>\n<td>Telecommunication Services</td>\n<td>60,911,800,000</td>\n<td>3.65</td>\n</tr>\n<tr>\n<td>TME</td>\n<td>Trade Me Group Limited NZX</td>\n<td>Consumer Discretionary</td>\n<td>1,926,230,000</td>\n<td>0.12</td>\n</tr>\n<tr>\n<td>TNE</td>\n<td>Technology One Limited</td>\n<td>Information Technology</td>\n<td>1,770,140,000</td>\n<td>0.11</td>\n</tr>\n<tr>\n<td>TOX</td>\n<td>TOX Free Solutions Limited</td>\n<td>Industrials</td>\n<td>502,320,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>TPM</td>\n<td>TPG Telecom Limited</td>\n<td>Telecommunication Services</td>\n<td>5,786,590,000</td>\n<td>0.35</td>\n</tr>\n<tr>\n<td>TRS</td>\n<td>The Reject Shop Limited</td>\n<td>Consumer Discretionary</td>\n<td>244,729,000</td>\n<td>0.01</td>\n</tr>\n<tr>\n<td>TTS</td>\n<td>Tatts Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>6,578,970,000</td>\n<td>0.39</td>\n</tr>\n<tr>\n<td>TWE</td>\n<td>Treasury Wine Estates Limited</td>\n<td>Consumer Staples</td>\n<td>7,883,280,000</td>\n<td>0.47</td>\n</tr>\n<tr>\n<td>VCX</td>\n<td>Vicinity Centres Stapled</td>\n<td>Real Estate</td>\n<td>11,836,400,000</td>\n<td>0.71</td>\n</tr>\n<tr>\n<td>VLW</td>\n<td>Villa World Limited</td>\n<td>Real Estate</td>\n<td>258,995,000</td>\n<td>0.02</td>\n</tr>\n<tr>\n<td>VOC</td>\n<td>Vocus Communications Limited</td>\n<td>Telecommunication Services</td>\n<td>2,400,770,000</td>\n<td>0.14</td>\n</tr>\n<tr>\n<td>VRL</td>\n<td>Village Roadshow Limited</td>\n<td>Consumer Discretionary</td>\n<td>737,762,000</td>\n<td>0.04</td>\n</tr>\n<tr>\n<td>VRT</td>\n<td>Virtus Health Limited</td>\n<td>Health Care</td>\n<td>501,551,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>VTG</td>\n<td>Vita Group Limited</td>\n<td>Consumer Discretionary</td>\n<td>490,858,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>VVR</td>\n<td>Viva Energy Reit Stapled</td>\n<td>Real Estate</td>\n<td>1,656,360,000</td>\n<td>0.1</td>\n</tr>\n<tr>\n<td>WBA</td>\n<td>Webster Limited</td>\n<td>Consumer Staples</td>\n<td>474,619,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>WBC</td>\n<td>Westpac Banking Corporation</td>\n<td>Financials</td>\n<td>109,426,000,000</td>\n<td>6.55</td>\n</tr>\n<tr>\n<td>WEB</td>\n<td>Webjet Limited</td>\n<td>Consumer Discretionary</td>\n<td>1,037,770,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>WES</td>\n<td>Wesfarmers Limited</td>\n<td>Consumer Staples</td>\n<td>47,657,800,000</td>\n<td>2.85</td>\n</tr>\n<tr>\n<td>WFD</td>\n<td>Westfield Corporation Stapled</td>\n<td>Real Estate</td>\n<td>19,492,500,000</td>\n<td>1.17</td>\n</tr>\n<tr>\n<td>WGX</td>\n<td>Westgold Resources Limited</td>\n<td>Materials</td>\n<td>502,708,000</td>\n<td>0.03</td>\n</tr>\n<tr>\n<td>WHC</td>\n<td>Whitehaven Coal Limited</td>\n<td>Energy</td>\n<td>2,677,980,000</td>\n<td>0.16</td>\n</tr>\n<tr>\n<td>WOR</td>\n<td>Worleyparsons Limited</td>\n<td>Energy</td>\n<td>2,395,430,000</td>\n<td>0.14</td>\n</tr>\n<tr>\n<td>WOW</td>\n<td>Woolworths Limited</td>\n<td>Consumer Staples</td>\n<td>31,044,700,000</td>\n<td>1.86</td>\n</tr>\n<tr>\n<td>WPL</td>\n<td>Woodside Petroleum Limited</td>\n<td>Energy</td>\n<td>26,250,600,000</td>\n<td>1.57</td>\n</tr>\n<tr>\n<td>WPP</td>\n<td>WPP Aunz LTD</td>\n<td>Consumer Discretionary</td>\n<td>1,031,100,000</td>\n<td>0.06</td>\n</tr>\n<tr>\n<td>WSA</td>\n<td>Western Areas Limited</td>\n<td>Materials</td>\n<td>835,754,000</td>\n<td>0.05</td>\n</tr>\n<tr>\n<td>WTC</td>\n<td>Wisetech Global Limited</td>\n<td>Information Technology</td>\n<td>1,642,050,000</td>\n<td>0.1</td>\n</tr>\n</tbody>\n</table>\n<hr />\n<p>&nbsp;</p>\n<h2>2016 Archived Lists</h2>\n<p><a href="/wp-content/uploads/csv/20161201-asx300.csv">1 December</a><br />\n<a href="/wp-content/uploads/csv/20161101-asx300.csv">1 November</a><br />\n<a href="/wp-content/uploads/csv/20161010-asx300.csv">10 October</a><br />\n<a href="/wp-content/uploads/csv/20160901-asx300.csv">1 September</a><br />\n<a href="/wp-content/uploads/csv/20160807-asx300.csv">7 August</a></p>\n<hr />\n<p>&nbsp;</p>\n<h2 class="p1"><span id="sector-breakdown" class="s1"><b>Sector breakdown</b></span></h2>\n<p class="p1">All S&amp;P/ASX Indices use the Global Industry Classification Standard (GICS) to categorise constituents according to their principal business activity.</p>\n<p>Data updated: 10 October 2016</p>\n<p class="mobile-only">See the Excel spreadsheet for Sector Breakdown data.</p>\n<div>\n<p><!--Div that will hold the pie chart--></p>\n<div id="chart_div_pie" style="height: 300px;"></div>\n</div>\n<h2 class="p1"></h2>\n<h2 class="p1"></h2>\n<h2 class="p1"><b>\xc2\xa0</b></h2>\n<h2 class="p1"><span id="fundamentals" class="s1"><b>PE Ratio &amp; Dividend Yield</b></span></h2>\n<p class="p1">Fundamental data for the S&amp;P/ASX 300 Index is weight-adjusted by market capitalisation. Companies with zero or negative values are ignored.</p>\n<p class="p1">Data updated: 7 August 2016</p>\n<p><!--Div that will hold the pie chart--></p>\n<div id="chart_div_column"></div>\n<p>&nbsp;</p>\n<h2 class="p1"><span id="etf" class="s1"><b>Exchange Traded Fund (ETF)</b></span></h2>\n<p class="p1">ETFs are managed funds that track a benchmark. They trade on the ASX like ordinary shares using their ticker code. The goal of an index fund is to replicate the performance of the underlying index, less fees and expenses.</p>\n<p class="p1">As at 10 October 2016, the Vanguard Australian Shares Index ETF (VAS)</span><span class="s1">\xc2\xa0is the only ETF that tracks the performance of the S&amp;P/ASX 300 Index.</p>\n<div class="twocol-one">\n<table class="etf">\n<tbody>\n<tr>\n<th colspan="2">Vanguard Australian Shares Index ETF (VAS)</th>\n</tr>\n<tr>\n<td>Manager:</td>\n<td>\nVanguard\n</td>\n</tr>\n<tr>\n<td>Inception:</td>\n<td>4 May 2009</td>\n</tr>\n<tr>\n<td>Mgmt Fee:</td>\n<td>0.15%</td>\n</tr>\n<tr>\n<td>Fact Sheet:</td>\n<td><a target="_blank" href="https://static.vgcontent.info/crp/intl/auw/docs/etfs/profiles/VAS_profile.pdf?20160721|091500">Link</a></td>\n</tr>\n</tbody>\n</table>\n</div> <div class="twocol-one last">\n<p><center><strong>VAS vs S&amp;P/ASX 300 Index</strong></center><br />\n<a href="https://chart.finance.yahoo.com/z?s=VAS.AX&amp;t=1y&amp;q=l&amp;l=off&amp;z=l&amp;c=%5EAXKO" data-rel="lightbox"><img src="https://chart.finance.yahoo.com/z?s=VAS.AX&#038;t=1y&#038;q=l&#038;l=on&#038;z=l&#038;c=%5EAXKO&#038;a=s&#038;lang=en-AU&#038;region=AU" alt="ASX300 Index fund ETF vs S&amp;P/ASX 300 Index" width="360" /></a></div></p>\n<p>&nbsp;</p>\n<p>&nbsp;</p>\n<h2>Additional Information</h2>\n<p><img src="/wp-content/uploads/sandp.png" class="link-icons"><a href="http://au.spindices.com/idsenhancedfactsheet/file.pdf?calcFrequency=M&#038;force_download=true&#038;indexId=124612" target="_blank">S&#038;P/ASX 300 FactSheet (PDF)</a></p>\n<p><img src="/wp-content/uploads/market-index-icon.png" class="link-icons"><a href="http://www.marketindex.com.au/asx300" target="_blank">S&#038;P/ASX 300 Share Prices &#038; Charts</a></p>\n            </div><!-- .entry-content -->\n\n</article><!-- #post-## -->\n                \n            </div>\n\n        \n        \n<div id="sidebar" class="site-sidebar">\n\n    \n    <div class="widget widget_text" id="text-2">\t\t\t<div class="textwidget"><p><img src="/wp-content/uploads/logo.png" style="width:120px;margin-bottom:10px;" /></p>\n<p>ASX 300 List is an independent aggregator of publicly available S&P/ASX 300 information. </p>\n<p>Download constituent data, GICS Sectors and market capitalisation in Excel format.</p>\n<p>Created with love in Sydney. <a href="/contact-us"><font style="color:#0F7FAF">Contact us</font></a>.</p>\n</div>\n\t\t<div class="clear"></div></div><div class="widget widget_text" id="text-3">\t\t\t<div class="textwidget"><img src="/wp-content/uploads/sandp.png" style="width:60px;float:left;margin-right:15px;" />\r\n\r\n<p style="text-align:left;">Standard & Poor\'s (S&P) manage the index methodology.</p></div>\n\t\t<div class="clear"></div></div><div class="widget widget_text" id="text-4">\t\t\t<div class="textwidget"><img src="/wp-content/uploads/asx-logo.png" style="width:60px;float:left;margin-right:15px;" />\r\n\r\n<p style="text-align:left;">Australian Securities Exchange (ASX) lists the companies.</p></div>\n\t\t<div class="clear"></div></div><div class="widget widget_text" id="text-5">\t\t\t<div class="textwidget"><img src="/wp-content/uploads/market-index-icon.png" style="width:60px;float:left;margin-right:15px;" />\r\n\r\n<p style="text-align:left;">Market Index provides company information and shares prices on all ASX stocks.</p></div>\n\t\t<div class="clear"></div></div>\n    </div>\n\n    </main><!-- #main -->\n\n\r\n    </div><!-- ./inner-wrap -->\r\n\r\n    <footer id="colophon" class="site-footer" role="contentinfo">\r\n\r\n        \r\n\r\n\r\n        \r\n\r\n        \r\n            <div class="footer-menu">\r\n                <div class="menu-footer"><ul id="menu-footer" class="menu"><li id="menu-item-26" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-26"><a href="https://www.asx300list.com/contact-us/">Contact Us</a></li>\n<li id="menu-item-24" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-24"><a href="https://www.asx300list.com/privacy-policy/">Privacy Policy</a></li>\n<li id="menu-item-25" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-25"><a href="https://www.asx300list.com/disclaimer/">Disclaimer</a></li>\n</ul></div>            </div>\r\n\r\n        \r\n\r\n        <div class="site-info">\r\n\r\n            Copyright \xc2\xa9 2016 ASX300list.com\r\n\r\n        </div><!-- .site-info -->\r\n    </footer><!-- #colophon -->\r\n\r\n</div>\r\n<script>\r\n  (function(i,s,o,g,r,a,m){i[\'GoogleAnalyticsObject\']=r;i[r]=i[r]||function(){\r\n  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),\r\n  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)\r\n  })(window,document,\'script\',\'https://www.google-analytics.com/analytics.js\',\'ga\');\r\n\r\n  ga(\'create\', \'UA-26193949-5\', \'auto\');\r\n  ga(\'send\', \'pageview\');\r\n\r\n</script><script>(function($){$(document).ready(function(){});})(jQuery);</script><script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/plugins/responsive-lightbox/assets/swipebox/js/jquery.swipebox.min.js?ver=1.6.10\'></script>\n<script type=\'text/javascript\'>\n/* <![CDATA[ */\nvar rlArgs = {"script":"swipebox","selector":"lightbox","customEvents":"","activeGalleries":"1","animation":"1","hideCloseButtonOnMobile":"0","removeBarsOnMobile":"0","hideBars":"1","hideBarsDelay":"5000","videoMaxWidth":"1080","useSVG":"1","loopAtEnd":"0"};\n/* ]]> */\n</script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/plugins/responsive-lightbox/js/front.js?ver=1.6.10\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-includes/js/comment-reply.min.js?ver=4.7.2\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/themes/foodica/js/jquery.mmenu.min.all.js?ver=1.2.1\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/themes/foodica/js/flickity.pkgd.min.js?ver=1.2.1\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/themes/foodica/js/jquery.fitvids.js?ver=1.2.1\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/themes/foodica/js/superfish.min.js?ver=1.2.1\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/themes/foodica/js/search_button.js?ver=1.2.1\'></script>\n<script type=\'text/javascript\'>\n/* <![CDATA[ */\nvar zoomOptions = {"slideshow_auto":"1","slideshow_speed":"3000"};\n/* ]]> */\n</script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/themes/foodica/js/functions.js?ver=1.2.1\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/themes/foodica/functions/wpzoom/assets/js/galleria.js\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-content/themes/foodica/functions/wpzoom/assets/js/wzslider.js\'></script>\n<script type=\'text/javascript\' src=\'https://www.asx300list.com/wp-includes/js/wp-embed.min.js?ver=4.7.2\'></script>\n\r\n</body>\r\n</html>'

In [3]:
soup = BeautifulSoup(r, 'html.parser')
print(soup.prettify())


<!DOCTYPE html>
<html lang="en-AU" prefix="og: http://ogp.me/ns#">
 <head>
  <meta charset="utf-8">
   <meta content="width=device-width, initial-scale=1.0" name="viewport">
    <link href="http://gmpg.org/xfn/11" rel="profile">
     <link href="https://www.asx300list.com/xmlrpc.php" rel="pingback">
      <title>
       ASX 300 List - Data for ASX Top 300 Companies
      </title>
      <!-- This site is optimized with the Yoast SEO plugin v4.0.2 - https://yoast.com/wordpress/plugins/seo/ -->
      <meta content="Download an up-to-date list of Australia's top 300 companies. ASX 300 constituent data includes GICS Sectors, market cap and index weighting." name="description"/>
      <meta content="noodp" name="robots"/>
      <link href="https://www.asx300list.com/" rel="canonical"/>
      <meta content="en_US" property="og:locale"/>
      <meta content="website" property="og:type"/>
      <meta content="ASX 300 List - Data for ASX Top 300 Companies" property="og:title"/>
      <meta content="Download an up-to-date list of Australia's top 300 companies. ASX 300 constituent data includes GICS Sectors, market cap and index weighting." property="og:description"/>
      <meta content="https://www.asx300list.com/" property="og:url"/>
      <meta content="ASX 300 List" property="og:site_name"/>
      <meta content="https://www.asx300list.com/wp-content/uploads/market-index-icon.png" property="og:image"/>
      <meta content="https://chart.finance.yahoo.com/z?s=VAS.AX&amp;t=1y&amp;q=l&amp;l=on&amp;z=l&amp;c=%5EAXKO&amp;a=s&amp;lang=en-AU&amp;region=AU" property="og:image"/>
      <meta content="https://www.asx300list.com/wp-content/uploads/sandp.png" property="og:image"/>
      <meta content="summary" name="twitter:card"/>
      <meta content="Download an up-to-date list of Australia's top 300 companies. ASX 300 constituent data includes GICS Sectors, market cap and index weighting." name="twitter:description"/>
      <meta content="ASX 300 List - Data for ASX Top 300 Companies" name="twitter:title"/>
      <meta content="https://www.asx300list.com/wp-content/uploads/market-index-icon.png" name="twitter:image"/>
      <script type="application/ld+json">
       {"@context":"http:\/\/schema.org","@type":"WebSite","@id":"#website","url":"https:\/\/www.asx300list.com\/","name":"ASX 300 List","potentialAction":{"@type":"SearchAction","target":"https:\/\/www.asx300list.com\/?s={search_term_string}","query-input":"required name=search_term_string"}}
      </script>
      <!-- / Yoast SEO plugin. -->
      <link href="//fonts.googleapis.com" rel="dns-prefetch"/>
      <link href="//s.w.org" rel="dns-prefetch"/>
      <link href="https://www.asx300list.com/feed/" rel="alternate" title="ASX 300 List » Feed" type="application/rss+xml"/>
      <link href="https://www.asx300list.com/comments/feed/" rel="alternate" title="ASX 300 List » Comments Feed" type="application/rss+xml"/>
      <script type="text/javascript">
       window._wpemojiSettings = {"baseUrl":"https:\/\/s.w.org\/images\/core\/emoji\/2.2.1\/72x72\/","ext":".png","svgUrl":"https:\/\/s.w.org\/images\/core\/emoji\/2.2.1\/svg\/","svgExt":".svg","source":{"concatemoji":"https:\/\/www.asx300list.com\/wp-includes\/js\/wp-emoji-release.min.js?ver=4.7.2"}};
			!function(a,b,c){function d(a){var b,c,d,e,f=String.fromCharCode;if(!k||!k.fillText)return!1;switch(k.clearRect(0,0,j.width,j.height),k.textBaseline="top",k.font="600 32px Arial",a){case"flag":return k.fillText(f(55356,56826,55356,56819),0,0),!(j.toDataURL().length<3e3)&&(k.clearRect(0,0,j.width,j.height),k.fillText(f(55356,57331,65039,8205,55356,57096),0,0),b=j.toDataURL(),k.clearRect(0,0,j.width,j.height),k.fillText(f(55356,57331,55356,57096),0,0),c=j.toDataURL(),b!==c);case"emoji4":return k.fillText(f(55357,56425,55356,57341,8205,55357,56507),0,0),d=j.toDataURL(),k.clearRect(0,0,j.width,j.height),k.fillText(f(55357,56425,55356,57341,55357,56507),0,0),e=j.toDataURL(),d!==e}return!1}function e(a){var c=b.createElement("script");c.src=a,c.defer=c.type="text/javascript",b.getElementsByTagName("head")[0].appendChild(c)}var f,g,h,i,j=b.createElement("canvas"),k=j.getContext&&j.getContext("2d");for(i=Array("flag","emoji4"),c.supports={everything:!0,everythingExceptFlag:!0},h=0;h<i.length;h++)c.supports[i[h]]=d(i[h]),c.supports.everything=c.supports.everything&&c.supports[i[h]],"flag"!==i[h]&&(c.supports.everythingExceptFlag=c.supports.everythingExceptFlag&&c.supports[i[h]]);c.supports.everythingExceptFlag=c.supports.everythingExceptFlag&&!c.supports.flag,c.DOMReady=!1,c.readyCallback=function(){c.DOMReady=!0},c.supports.everything||(g=function(){c.readyCallback()},b.addEventListener?(b.addEventListener("DOMContentLoaded",g,!1),a.addEventListener("load",g,!1)):(a.attachEvent("onload",g),b.attachEvent("onreadystatechange",function(){"complete"===b.readyState&&c.readyCallback()})),f=c.source||{},f.concatemoji?e(f.concatemoji):f.wpemoji&&f.twemoji&&(e(f.twemoji),e(f.wpemoji)))}(window,document,window._wpemojiSettings);
      </script>
      <style type="text/css">
       img.wp-smiley,
img.emoji {
	display: inline !important;
	border: none !important;
	box-shadow: none !important;
	height: 1em !important;
	width: 1em !important;
	margin: 0 .07em !important;
	vertical-align: -0.1em !important;
	background: none !important;
	padding: 0 !important;
}
      </style>
      <link href="https://www.asx300list.com/wp-content/plugins/responsive-lightbox/assets/swipebox/css/swipebox.min.css?ver=1.6.10" id="responsive-lightbox-swipebox-css" media="all" rel="stylesheet" type="text/css"/>
      <link href="https://www.asx300list.com/wp-content/themes/foodica/functions/wpzoom/assets/css/shortcodes.css?ver=4.7.2" id="wpz-shortcodes-css" media="all" rel="stylesheet" type="text/css"/>
      <link href="https://www.asx300list.com/wp-content/themes/foodica/functions/wpzoom/assets/css/font-awesome.min.css?ver=4.7.2" id="zoom-font-awesome-css" media="all" rel="stylesheet" type="text/css"/>
      <link href="//fonts.googleapis.com/css?family=Merriweather%3Aregular%2Citalic%2C700%7CRoboto+Condensed%3Aregular%2Citalic%2C700%7CRoboto+Slab%3Aregular%2C700%26subset%3Dlatin%2C&amp;ver=4.7.2" id="foodica-google-fonts-css" media="all" rel="stylesheet" type="text/css"/>
      <link href="https://www.asx300list.com/wp-content/themes/foodica/style.css?ver=4.7.2" id="foodica-style-css" media="all" rel="stylesheet" type="text/css"/>
      <link href="https://www.asx300list.com/wp-content/themes/foodica/css/media-queries.css?ver=1.2.1" id="media-queries-css" media="all" rel="stylesheet" type="text/css"/>
      <link href="//fonts.googleapis.com/css?family=Cabin%3A400%2C500%7CAnnie+Use+Your+Telescope%7CRoboto+Condensed%3A400%2C700%7CRoboto+Slab%3A400%2C700%2C300%7CMerriweather%3A400%2C400italic%2C700%2C700italic&amp;subset=latin%2Ccyrillic%2Cgreek&amp;ver=4.7.2" id="foodica-google-font-default-css" media="all" rel="stylesheet" type="text/css"/>
      <link href="https://www.asx300list.com/wp-includes/css/dashicons.min.css?ver=4.7.2" id="dashicons-css" media="all" rel="stylesheet" type="text/css"/>
      <link href="https://www.asx300list.com/wp-content/themes/foodica/functions/wpzoom/assets/css/wzslider.css?ver=4.7.2" id="wzslider-css" media="all" rel="stylesheet" type="text/css"/>
      <link href="https://www.asx300list.com/wp-content/themes/foodica/styles/default.css?ver=4.7.2" id="wpzoom-theme-css" media="all" rel="stylesheet" type="text/css"/>
      <link href="https://www.asx300list.com/wp-content/themes/foodica/custom.css?ver=4.7.2" id="wpzoom-custom-css" media="all" rel="stylesheet" type="text/css"/>
      <script src="https://www.asx300list.com/wp-includes/js/jquery/jquery.js?ver=1.12.4" type="text/javascript">
      </script>
      <script src="https://www.asx300list.com/wp-includes/js/jquery/jquery-migrate.min.js?ver=1.4.1" type="text/javascript">
      </script>
      <script src="https://www.asx300list.com/wp-content/themes/foodica/js/init.js?ver=4.7.2" type="text/javascript">
      </script>
      <link href="https://www.asx300list.com/wp-json/" rel="https://api.w.org/"/>
      <link href="https://www.asx300list.com/xmlrpc.php?rsd" rel="EditURI" title="RSD" type="application/rsd+xml"/>
      <link href="https://www.asx300list.com/wp-includes/wlwmanifest.xml" rel="wlwmanifest" type="application/wlwmanifest+xml"/>
      <meta content="WordPress 4.7.2" name="generator"/>
      <link href="https://www.asx300list.com/" rel="shortlink"/>
      <link href="https://www.asx300list.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.asx300list.com%2F" rel="alternate" type="application/json+oembed"/>
      <link href="https://www.asx300list.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.asx300list.com%2F&amp;format=xml" rel="alternate" type="text/xml+oembed"/>
      <script async="" src="https://www.gstatic.com/charts/loader.js" type="text/javascript">
      </script>
      <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript">
      </script>
      <script async="" src="/wp-content/uploads/charts.js" type="text/javascript">
      </script>
      <link href="/wp-content/uploads/format.css" rel="stylesheet" type="text/css"/>
      <script>
       $(document).ready(function(){
  // Add smooth scrolling to all links
  $("a").on('click', function(event) {

    // Make sure this.hash has a value before overriding default behavior
    if (this.hash !== "") {
      // Prevent default anchor click behavior
      event.preventDefault();

      // Store hash
      var hash = this.hash;

      // Using jQuery's animate() method to add smooth page scroll
      // The optional number (800) specifies the number of milliseconds it takes to scroll to the specified area
      $('html, body').animate({
        scrollTop: $(hash).offset().top
      }, 800, function(){
   
        // Add hash (#) to URL when done scrolling (default click behavior)
        window.location.hash = hash;
      });
    } // End if
  });
});
      </script>
      <script async="" src="/wp-content/uploads/sorttable.js">
      </script>
      <!-- Begin Theme Custom CSS -->
      <style id="foodica-custom-css" type="text/css">
       .navbar-brand .tagline{color:#999999;}.top-navbar{background:#eff4f7;}.main-navbar{background:#eff4f7;}.navbar-brand h1 a{font-weight:bold;}.navbar-brand h1,.navbar-brand h1 a{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;}
      </style>
      <!-- End Theme Custom CSS -->
     </link>
    </link>
   </meta>
  </meta>
 </head>
 <body class="home page-template-default page page-id-16">
  <div class="page-wrap">
   <header class="site-header">
    <nav class="navbar" role="navigation">
     <nav class="top-navbar" role="navigation">
      <div class="inner-wrap">
       <div class="header_social">
       </div>
       <div class="navbar-header">
        <a class="navbar-toggle" href="#menu-top-slide">
         <span class="icon-bar">
         </span>
         <span class="icon-bar">
         </span>
         <span class="icon-bar">
         </span>
        </a>
       </div>
       <div id="navbar-main">
       </div>
       <!-- #navbar-main -->
      </div>
      <!-- ./inner-wrap -->
     </nav>
     <!-- .navbar -->
     <div class="clear">
     </div>
    </nav>
    <!-- .navbar -->
    <div class="inner-wrap">
     <div class="navbar-brand">
      <h1>
       <a href="https://www.asx300list.com" title="Constituents, Sectors &amp; Weighting">
        ASX 300 List
       </a>
      </h1>
      <p class="tagline">
       Constituents, Sectors &amp; Weighting
      </p>
     </div>
     <!-- .navbar-brand -->
    </div>
    <nav class="navbar" role="navigation">
     <nav class="main-navbar" role="navigation">
      <div class="inner-wrap">
       <div class="navbar-header">
        <a class="navbar-toggle" href="#menu-main-slide">
         <span class="icon-bar">
         </span>
         <span class="icon-bar">
         </span>
         <span class="icon-bar">
         </span>
        </a>
        <div class="menu-main-nav-container" id="menu-main-slide">
         <ul class="menu" id="menu-main-nav">
          <li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-9" id="menu-item-9">
           <a href="https://www.asx20list.com">
            ASX 20
           </a>
          </li>
          <li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-10" id="menu-item-10">
           <a href="https://www.asx50list.com">
            ASX 50
           </a>
          </li>
          <li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-11" id="menu-item-11">
           <a href="https://www.asx100list.com">
            ASX 100
           </a>
          </li>
          <li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-12" id="menu-item-12">
           <a href="http://www.asx200list.com">
            ASX 200
           </a>
          </li>
          <li class="menu-item menu-item-type-custom menu-item-object-custom current-menu-item current_page_item menu-item-home menu-item-13" id="menu-item-13">
           <a href="https://www.asx300list.com">
            ASX 300
           </a>
          </li>
          <li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-14" id="menu-item-14">
           <a href="https://www.allordslist.com">
            All Ords
           </a>
          </li>
         </ul>
        </div>
       </div>
       <div id="navbar-main">
        <div class="menu-main-nav-container">
         <ul class="nav navbar-nav dropdown sf-menu" id="menu-main-nav-1">
          <li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-9">
           <a href="https://www.asx20list.com">
            ASX 20
           </a>
          </li>
          <li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-10">
           <a href="https://www.asx50list.com">
            ASX 50
           </a>
          </li>
          <li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-11">
           <a href="https://www.asx100list.com">
            ASX 100
           </a>
          </li>
          <li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-12">
           <a href="http://www.asx200list.com">
            ASX 200
           </a>
          </li>
          <li class="menu-item menu-item-type-custom menu-item-object-custom current-menu-item current_page_item menu-item-home menu-item-13">
           <a href="https://www.asx300list.com">
            ASX 300
           </a>
          </li>
          <li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-14">
           <a href="https://www.allordslist.com">
            All Ords
           </a>
          </li>
         </ul>
        </div>
       </div>
       <!-- #navbar-main -->
      </div>
      <!-- ./inner-wrap -->
     </nav>
     <!-- .navbar -->
     <div class="clear">
     </div>
    </nav>
    <!-- .navbar -->
   </header>
   <!-- .site-header -->
   <div class="inner-wrap">
    <main class="site-main" id="main" role="main">
     <div class="content-area">
      <article class="post-16 page type-page status-publish hentry" id="post-16">
       <header class="entry-header">
        <h1 class="entry-title">
         ASX Top 300 Companies
        </h1>
       </header>
       <!-- .entry-header -->
       <div class="entry-content">
        <p class="p1">
         The S&amp;P/ASX 300 (XKO) Index provides exposure to Australia’s large, mid and small-cap equities.
        </p>
        <p class="p1">
         The index consists of all S&amp;P/ASX 200 companies plus 100 smaller-cap companies that have market capitalisations’ above ~$100 million (AUD). The combined market capitalisation represents ~73%
         <sup>
          (April 2016)
         </sup>
         of Australia’s sharemarket.
        </p>
        <p class="p1">
         Investors regularly use the ASX 300 as a benchmark for superannuation portfolios and managed funds due to its exposure to smaller companies.
        </p>
        <p class="p1">
         There’s currently one Exchange Traded Funds (ETF) that tracks the performance of the S&amp;P/ASX 300: Vanguard Australian Shares Index (VAS)
        </p>
        <div class="wpz-sc-box info ">
         <strong>
          IMPORTANT
         </strong>
         <br/>
         ASX300list.com doesn’t provide share price data.
        </div>
       </div>
      </article>
     </div>
    </main>
   </div>
  </div>
 </body>
</html>
<p>
 <img class="important-img" src="/wp-content/uploads/market-index-icon.png"/>
 <strong>
  The best website is
  <a href="http://www.marketindex.com.au">
   Market Index
  </a>
  .
 </strong>
 <br/>
 They have current ASX share prices, company charts and announcements, dividend data, directors’ transactions and broker consensus.
 <br/>
</p>
<p>
</p>
<h2 class="p1">
 <b>
  How are ASX 300 companies selected?
 </b>
</h2>
<p class="p1">
 Constituents are selected by a committee from Standard &amp; Poor’s (S&amp;P) and the Australian Securities Exchange (ASX).
</p>
<p class="p1">
 All companies listed on the Australian Securities Exchange (ASX) are ranked by market capitalisation. Exchange traded fund (ETFs) and Listed Investment Companies (LICs) are ignored. The top 300 ASX stocks that meet minimum volume and investment benchmarks then become eligible for inclusion in the index.
</p>
<p class="p1">
 Rebalances are conducted biannually in March and September. If a significant event occurs (e.g. delisting, merger, etc.) an intra-quarter removal may be conducted. Unlike other indices, a replacement is not added to the index until the next rebalance date.
</p>
<div class="shortcode-unorderedlist star">
</div>
<ul>
 <li>
  <strong>
   Skip to the ASX 300:
  </strong>
  <a href="#sector-breakdown">
   Sector Breakdown
  </a>
  |
  <a href="#fundamentals">
   PE &amp; Yield
  </a>
  |
  <a href="#etf">
   ETF
  </a>
 </li>
</ul>
<p>
</p>
<p>
</p>
<hr/>
<h2 class="p1">
</h2>
<h2 class="p1">
 <span class="s1" id="list">
  <b>
   ASX 300 List (1 January 2017)
  </b>
 </span>
</h2>
<p>
 Excel (CSV):
 <a href="/wp-content/uploads/csv/20170101-asx300.csv">
  Download
 </a>
</p>
<p>
 Columns are sortable.
</p>
<table class="tableizer-table sortable">
 <thead>
  <tr class="tableizer-firstrow">
   <th>
    Code
   </th>
   <th>
    Company
   </th>
   <th>
    Sector
   </th>
   <th>
    Market Cap
   </th>
   <th>
    Weight(%)
   </th>
  </tr>
 </thead>
 <tbody>
  <tr>
   <td>
    A2M
   </td>
   <td>
    The A2 Milk Company Limited NZ
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    1,460,370,000
   </td>
   <td>
    0.09
   </td>
  </tr>
  <tr>
   <td>
    AAC
   </td>
   <td>
    Australian Agricultural Company Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    947,014,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    AAD
   </td>
   <td>
    Ardent Leisure Group Stapled
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,097,680,000
   </td>
   <td>
    0.07
   </td>
  </tr>
  <tr>
   <td>
    ABC
   </td>
   <td>
    Adelaide Brighton Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    3,527,620,000
   </td>
   <td>
    0.21
   </td>
  </tr>
  <tr>
   <td>
    ABP
   </td>
   <td>
    Abacus Property Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    1,728,420,000
   </td>
   <td>
    0.1
   </td>
  </tr>
  <tr>
   <td>
    ACX
   </td>
   <td>
    Aconex Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    1,003,640,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    ADH
   </td>
   <td>
    Adairs Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    265,400,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    AGI
   </td>
   <td>
    Ainsworth Game Technology Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    698,591,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    AGL
   </td>
   <td>
    AGL Energy Limited
   </td>
   <td>
    Utilities
   </td>
   <td>
    14,851,400,000
   </td>
   <td>
    0.89
   </td>
  </tr>
  <tr>
   <td>
    AHG
   </td>
   <td>
    Automotive Holdings Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,309,910,000
   </td>
   <td>
    0.08
   </td>
  </tr>
  <tr>
   <td>
    AHY
   </td>
   <td>
    Asaleo Care Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    821,324,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    AIA
   </td>
   <td>
    Auckland International Airport Limited NZX
   </td>
   <td>
    Industrials
   </td>
   <td>
    7,323,990,000
   </td>
   <td>
    0.44
   </td>
  </tr>
  <tr>
   <td>
    AJA
   </td>
   <td>
    Astro Japan Property Group Forus
   </td>
   <td>
    Real Estate
   </td>
   <td>
    403,339,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    AJX
   </td>
   <td>
    Alexium International Group Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    184,243,000
   </td>
   <td>
    0.01
   </td>
  </tr>
  <tr>
   <td>
    ALL
   </td>
   <td>
    Aristocrat Leisure Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    9,897,430,000
   </td>
   <td>
    0.59
   </td>
  </tr>
  <tr>
   <td>
    ALQ
   </td>
   <td>
    Als Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    3,045,500,000
   </td>
   <td>
    0.18
   </td>
  </tr>
  <tr>
   <td>
    ALU
   </td>
   <td>
    Altium Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    1,053,450,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    AMA
   </td>
   <td>
    AMA Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    466,583,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    AMC
   </td>
   <td>
    Amcor Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    17,314,200,000
   </td>
   <td>
    1.04
   </td>
  </tr>
  <tr>
   <td>
    AMP
   </td>
   <td>
    AMP Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    14,907,000,000
   </td>
   <td>
    0.89
   </td>
  </tr>
  <tr>
   <td>
    ANN
   </td>
   <td>
    Ansell Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    3,643,430,000
   </td>
   <td>
    0.22
   </td>
  </tr>
  <tr>
   <td>
    ANZ
   </td>
   <td>
    Australia And New Zealand Banking Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    89,314,200,000
   </td>
   <td>
    5.35
   </td>
  </tr>
  <tr>
   <td>
    AOG
   </td>
   <td>
    Aveo Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    1,947,480,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    APA
   </td>
   <td>
    APA Group Stapled
   </td>
   <td>
    Utilities
   </td>
   <td>
    9,549,610,000
   </td>
   <td>
    0.57
   </td>
  </tr>
  <tr>
   <td>
    API
   </td>
   <td>
    Australian Pharmaceutical Industries Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    1,008,990,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    APN
   </td>
   <td>
    APN News &amp; Media Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    873,284,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    APO
   </td>
   <td>
    Apn Outdoor Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    984,692,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    AQG
   </td>
   <td>
    Alacer Gold Corp Cdi 1:1
   </td>
   <td>
    Materials
   </td>
   <td>
    195,595,000
   </td>
   <td>
    0.01
   </td>
  </tr>
  <tr>
   <td>
    ARB
   </td>
   <td>
    ARB Corporation Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,397,600,000
   </td>
   <td>
    0.08
   </td>
  </tr>
  <tr>
   <td>
    ARF
   </td>
   <td>
    Arena Reit Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    436,886,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    ASB
   </td>
   <td>
    Austal Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    607,433,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    AST
   </td>
   <td>
    Ausnet Services Limited
   </td>
   <td>
    Utilities
   </td>
   <td>
    5,692,980,000
   </td>
   <td>
    0.34
   </td>
  </tr>
  <tr>
   <td>
    ASX
   </td>
   <td>
    ASX Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    9,629,420,000
   </td>
   <td>
    0.58
   </td>
  </tr>
  <tr>
   <td>
    AVN
   </td>
   <td>
    Aventus Retail Property Fund Unit
   </td>
   <td>
    Real Estate
   </td>
   <td>
    930,532,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    AWC
   </td>
   <td>
    Alumina Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    5,270,110,000
   </td>
   <td>
    0.32
   </td>
  </tr>
  <tr>
   <td>
    AWE
   </td>
   <td>
    AWE Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    327,457,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    AYS
   </td>
   <td>
    Amaysim Australia Limited
   </td>
   <td>
    Telecommunication Services
   </td>
   <td>
    365,136,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    AZJ
   </td>
   <td>
    Aurizon Holdings Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    10,361,300,000
   </td>
   <td>
    0.62
   </td>
  </tr>
  <tr>
   <td>
    BAL
   </td>
   <td>
    Bellamy’s Australia Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    645,866,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    BAP
   </td>
   <td>
    Bapcor Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,644,680,000
   </td>
   <td>
    0.1
   </td>
  </tr>
  <tr>
   <td>
    BBN
   </td>
   <td>
    Baby Bunting Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    305,501,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    BDR
   </td>
   <td>
    Beadell Resources Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    285,543,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    BEN
   </td>
   <td>
    Bendigo And Adelaide Bank Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    6,007,070,000
   </td>
   <td>
    0.36
   </td>
  </tr>
  <tr>
   <td>
    BGA
   </td>
   <td>
    Bega Cheese Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    647,036,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    BHP
   </td>
   <td>
    BHP Billiton Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    80,485,000,000
   </td>
   <td>
    4.82
   </td>
  </tr>
  <tr>
   <td>
    BKL
   </td>
   <td>
    Blackmores Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    1,780,460,000
   </td>
   <td>
    0.11
   </td>
  </tr>
  <tr>
   <td>
    BKW
   </td>
   <td>
    Brickworks Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    2,026,350,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    BLA
   </td>
   <td>
    Blue SKY Alternative Investments Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    471,915,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    BLD
   </td>
   <td>
    Boral Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    6,342,320,000
   </td>
   <td>
    0.38
   </td>
  </tr>
  <tr>
   <td>
    BOQ
   </td>
   <td>
    Bank of Queensland Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    4,597,540,000
   </td>
   <td>
    0.28
   </td>
  </tr>
  <tr>
   <td>
    BPT
   </td>
   <td>
    Beach Energy Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    1,585,330,000
   </td>
   <td>
    0.09
   </td>
  </tr>
  <tr>
   <td>
    BRG
   </td>
   <td>
    Breville Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,126,630,000
   </td>
   <td>
    0.07
   </td>
  </tr>
  <tr>
   <td>
    BSL
   </td>
   <td>
    Bluescope Steel Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    5,325,730,000
   </td>
   <td>
    0.32
   </td>
  </tr>
  <tr>
   <td>
    BTT
   </td>
   <td>
    BT Investment Management Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    3,303,480,000
   </td>
   <td>
    0.2
   </td>
  </tr>
  <tr>
   <td>
    BWP
   </td>
   <td>
    BWP Trust Ord Units
   </td>
   <td>
    Real Estate
   </td>
   <td>
    1,920,730,000
   </td>
   <td>
    0.11
   </td>
  </tr>
  <tr>
   <td>
    BWX
   </td>
   <td>
    BWX Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    373,799,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    BXB
   </td>
   <td>
    Brambles Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    19,696,700,000
   </td>
   <td>
    1.18
   </td>
  </tr>
  <tr>
   <td>
    CAB
   </td>
   <td>
    Cabcharge Australia Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    467,271,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    CAR
   </td>
   <td>
    Carsales.com Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    2,740,040,000
   </td>
   <td>
    0.16
   </td>
  </tr>
  <tr>
   <td>
    CBA
   </td>
   <td>
    Commonwealth Bank of Australia
   </td>
   <td>
    Financials
   </td>
   <td>
    142,007,000,000
   </td>
   <td>
    8.5
   </td>
  </tr>
  <tr>
   <td>
    CCL
   </td>
   <td>
    Coca-cola Amatil Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    7,727,530,000
   </td>
   <td>
    0.46
   </td>
  </tr>
  <tr>
   <td>
    CCP
   </td>
   <td>
    Credit Corp Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    849,522,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    CCV
   </td>
   <td>
    Cash Converters International
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    165,171,000
   </td>
   <td>
    0.01
   </td>
  </tr>
  <tr>
   <td>
    CDD
   </td>
   <td>
    Cardno Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    453,212,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    CGC
   </td>
   <td>
    Costa Group Holdings Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    1,097,640,000
   </td>
   <td>
    0.07
   </td>
  </tr>
  <tr>
   <td>
    CGF
   </td>
   <td>
    Challenger Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    6,425,600,000
   </td>
   <td>
    0.38
   </td>
  </tr>
  <tr>
   <td>
    CHC
   </td>
   <td>
    Charter Hall Group Forus
   </td>
   <td>
    Real Estate
   </td>
   <td>
    1,956,280,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    CIM
   </td>
   <td>
    Cimic Group Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    11,329,400,000
   </td>
   <td>
    0.68
   </td>
  </tr>
  <tr>
   <td>
    CKF
   </td>
   <td>
    Collins Foods Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    629,886,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    CL1
   </td>
   <td>
    Class Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    334,165,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    CMW
   </td>
   <td>
    Cromwell Property Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    1,732,510,000
   </td>
   <td>
    0.1
   </td>
  </tr>
  <tr>
   <td>
    CNU
   </td>
   <td>
    Chorus Limited NZX
   </td>
   <td>
    Telecommunication Services
   </td>
   <td>
    1,558,770,000
   </td>
   <td>
    0.09
   </td>
  </tr>
  <tr>
   <td>
    COH
   </td>
   <td>
    Cochlear Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    7,037,640,000
   </td>
   <td>
    0.42
   </td>
  </tr>
  <tr>
   <td>
    CPU
   </td>
   <td>
    Computershare Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    6,807,220,000
   </td>
   <td>
    0.41
   </td>
  </tr>
  <tr>
   <td>
    CQR
   </td>
   <td>
    Charter Hall Retail Reit Unit
   </td>
   <td>
    Real Estate
   </td>
   <td>
    1,718,180,000
   </td>
   <td>
    0.1
   </td>
  </tr>
  <tr>
   <td>
    CSL
   </td>
   <td>
    CSL Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    45,783,800,000
   </td>
   <td>
    2.74
   </td>
  </tr>
  <tr>
   <td>
    CSR
   </td>
   <td>
    CSR Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    2,330,700,000
   </td>
   <td>
    0.14
   </td>
  </tr>
  <tr>
   <td>
    CSV
   </td>
   <td>
    CSG Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    233,404,000
   </td>
   <td>
    0.01
   </td>
  </tr>
  <tr>
   <td>
    CTD
   </td>
   <td>
    Corporate Travel Management Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,823,200,000
   </td>
   <td>
    0.11
   </td>
  </tr>
  <tr>
   <td>
    CTX
   </td>
   <td>
    Caltex Australia Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    7,944,290,000
   </td>
   <td>
    0.48
   </td>
  </tr>
  <tr>
   <td>
    CVO
   </td>
   <td>
    Cover-more Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    731,311,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    CWN
   </td>
   <td>
    Crown Resorts Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    8,434,800,000
   </td>
   <td>
    0.51
   </td>
  </tr>
  <tr>
   <td>
    CWP
   </td>
   <td>
    Cedar Woods Properties Limited
   </td>
   <td>
    Real Estate
   </td>
   <td>
    398,403,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    CWY
   </td>
   <td>
    Cleanaway Waste Management Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    1,956,840,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    CYB
   </td>
   <td>
    CYBG PLC Cdi 1:1
   </td>
   <td>
    Financials
   </td>
   <td>
    3,596,910,000
   </td>
   <td>
    0.22
   </td>
  </tr>
  <tr>
   <td>
    DCN
   </td>
   <td>
    Dacian Gold Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    301,351,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    DLX
   </td>
   <td>
    Duluxgroup Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    2,428,920,000
   </td>
   <td>
    0.15
   </td>
  </tr>
  <tr>
   <td>
    DMP
   </td>
   <td>
    Domino’s Pizza Enterprises Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    5,773,160,000
   </td>
   <td>
    0.35
   </td>
  </tr>
  <tr>
   <td>
    DNA
   </td>
   <td>
    Donaco International Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    303,392,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    DOW
   </td>
   <td>
    Downer Edi Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    2,586,940,000
   </td>
   <td>
    0.15
   </td>
  </tr>
  <tr>
   <td>
    DRM
   </td>
   <td>
    Doray Minerals Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    153,476,000
   </td>
   <td>
    0.01
   </td>
  </tr>
  <tr>
   <td>
    DUE
   </td>
   <td>
    Duet Group Forus
   </td>
   <td>
    Utilities
   </td>
   <td>
    6,666,540,000
   </td>
   <td>
    0.4
   </td>
  </tr>
  <tr>
   <td>
    DXS
   </td>
   <td>
    Dexus Property Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    9,311,660,000
   </td>
   <td>
    0.56
   </td>
  </tr>
  <tr>
   <td>
    ECX
   </td>
   <td>
    Eclipx Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    991,813,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    EHE
   </td>
   <td>
    Estia Health Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    594,709,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    ELD
   </td>
   <td>
    Elders Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    452,022,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    EML
   </td>
   <td>
    EML Payments Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    448,920,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    EPW
   </td>
   <td>
    Erm Power Limited
   </td>
   <td>
    Utilities
   </td>
   <td>
    323,986,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    EQT
   </td>
   <td>
    EQT Holdings Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    350,966,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    EVN
   </td>
   <td>
    Evolution Mining Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    3,561,030,000
   </td>
   <td>
    0.21
   </td>
  </tr>
  <tr>
   <td>
    EWC
   </td>
   <td>
    Energy World Corporation LTD
   </td>
   <td>
    Utilities
   </td>
   <td>
    450,883,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    FAR
   </td>
   <td>
    FAR Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    334,615,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    FBU
   </td>
   <td>
    Fletcher Building Limited NZX
   </td>
   <td>
    Materials
   </td>
   <td>
    7,168,870,000
   </td>
   <td>
    0.43
   </td>
  </tr>
  <tr>
   <td>
    FET
   </td>
   <td>
    Folkestone Education Trust Unit
   </td>
   <td>
    Real Estate
   </td>
   <td>
    633,272,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    FLT
   </td>
   <td>
    Flight Centre Travel Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    3,160,500,000
   </td>
   <td>
    0.19
   </td>
  </tr>
  <tr>
   <td>
    FMG
   </td>
   <td>
    Fortescue Metals Group LTD
   </td>
   <td>
    Materials
   </td>
   <td>
    18,340,300,000
   </td>
   <td>
    1.1
   </td>
  </tr>
  <tr>
   <td>
    FNP
   </td>
   <td>
    Freedom Foods Group Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    865,644,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    FPH
   </td>
   <td>
    Fisher &amp; Paykel Healthcare Corporation Limited NZX
   </td>
   <td>
    Health Care
   </td>
   <td>
    4,647,370,000
   </td>
   <td>
    0.28
   </td>
  </tr>
  <tr>
   <td>
    FSF
   </td>
   <td>
    Fonterra Shareholders’ Fund Unit NZX
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    697,194,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    FXJ
   </td>
   <td>
    Fairfax Media Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    2,046,530,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    FXL
   </td>
   <td>
    Flexigroup Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    841,515,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    GBT
   </td>
   <td>
    GBST Holdings Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    255,150,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    GDI
   </td>
   <td>
    GDI Property Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    533,431,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    GEM
   </td>
   <td>
    G8 Education Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,373,220,000
   </td>
   <td>
    0.08
   </td>
  </tr>
  <tr>
   <td>
    GHC
   </td>
   <td>
    Generation Healthcare Reit Units
   </td>
   <td>
    Real Estate
   </td>
   <td>
    421,122,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    GMA
   </td>
   <td>
    Genworth Mortgage Insurance Australia Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    1,665,620,000
   </td>
   <td>
    0.1
   </td>
  </tr>
  <tr>
   <td>
    GMG
   </td>
   <td>
    Goodman Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    12,756,400,000
   </td>
   <td>
    0.76
   </td>
  </tr>
  <tr>
   <td>
    GNC
   </td>
   <td>
    Graincorp Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    2,187,860,000
   </td>
   <td>
    0.13
   </td>
  </tr>
  <tr>
   <td>
    GOR
   </td>
   <td>
    Gold Road Resources Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    500,853,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    GOZ
   </td>
   <td>
    Growthpoint Properties Australia Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    2,103,870,000
   </td>
   <td>
    0.13
   </td>
  </tr>
  <tr>
   <td>
    GPT
   </td>
   <td>
    GPT Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    9,043,720,000
   </td>
   <td>
    0.54
   </td>
  </tr>
  <tr>
   <td>
    GTY
   </td>
   <td>
    Gateway Lifestyle Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    646,699,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    GUD
   </td>
   <td>
    G.u.d. Holdings Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    897,693,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    GWA
   </td>
   <td>
    GWA Group Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    781,285,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    GXL
   </td>
   <td>
    Greencross Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    796,804,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    GXY
   </td>
   <td>
    Galaxy Resources Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    962,087,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    HFA
   </td>
   <td>
    HFA Holdings Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    389,155,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    HFR
   </td>
   <td>
    Highfield Resources Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    427,495,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    HGG
   </td>
   <td>
    Henderson Group PLC Cdi 1:1
   </td>
   <td>
    Financials
   </td>
   <td>
    2,875,710,000
   </td>
   <td>
    0.17
   </td>
  </tr>
  <tr>
   <td>
    HPI
   </td>
   <td>
    Hotel Property Investments Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    414,939,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    HSN
   </td>
   <td>
    Hansen Technologies Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    712,165,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    HSO
   </td>
   <td>
    Healthscope Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    3,973,360,000
   </td>
   <td>
    0.24
   </td>
  </tr>
  <tr>
   <td>
    HVN
   </td>
   <td>
    Harvey Norman Holdings Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    5,718,530,000
   </td>
   <td>
    0.34
   </td>
  </tr>
  <tr>
   <td>
    IAG
   </td>
   <td>
    Insurance Australia Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    14,181,500,000
   </td>
   <td>
    0.85
   </td>
  </tr>
  <tr>
   <td>
    IDR
   </td>
   <td>
    Industria Reit Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    342,539,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    IEL
   </td>
   <td>
    Idp Education Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    998,677,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    IFL
   </td>
   <td>
    Ioof Holdings Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    2,764,230,000
   </td>
   <td>
    0.17
   </td>
  </tr>
  <tr>
   <td>
    IFM
   </td>
   <td>
    Infomedia LTD
   </td>
   <td>
    Information Technology
   </td>
   <td>
    226,901,000
   </td>
   <td>
    0.01
   </td>
  </tr>
  <tr>
   <td>
    IFN
   </td>
   <td>
    Infigen Energy Stapled
   </td>
   <td>
    Utilities
   </td>
   <td>
    702,520,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    IGO
   </td>
   <td>
    Independence Group NL
   </td>
   <td>
    Materials
   </td>
   <td>
    2,534,540,000
   </td>
   <td>
    0.15
   </td>
  </tr>
  <tr>
   <td>
    ILU
   </td>
   <td>
    Iluka Resources Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    3,043,950,000
   </td>
   <td>
    0.18
   </td>
  </tr>
  <tr>
   <td>
    IMF
   </td>
   <td>
    IMF Bentham Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    299,584,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    INA
   </td>
   <td>
    Ingenia Communities Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    476,268,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    INM
   </td>
   <td>
    Iron Mountain Incorporated Cdi 1:1
   </td>
   <td>
    Real Estate
   </td>
   <td>
    2,146,340,000
   </td>
   <td>
    0.13
   </td>
  </tr>
  <tr>
   <td>
    IOF
   </td>
   <td>
    Investa Office Fund Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    2,898,300,000
   </td>
   <td>
    0.17
   </td>
  </tr>
  <tr>
   <td>
    IPD
   </td>
   <td>
    Impedimed Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    386,258,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    IPH
   </td>
   <td>
    IPH Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    980,110,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    IPL
   </td>
   <td>
    Incitec Pivot Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    6,073,810,000
   </td>
   <td>
    0.36
   </td>
  </tr>
  <tr>
   <td>
    IRE
   </td>
   <td>
    Iress Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    2,017,390,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    ISD
   </td>
   <td>
    Isentia Group Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    574,000,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    ISU
   </td>
   <td>
    Iselect Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    439,875,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    IVC
   </td>
   <td>
    Invocare Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,526,120,000
   </td>
   <td>
    0.09
   </td>
  </tr>
  <tr>
   <td>
    JBH
   </td>
   <td>
    JB Hi-fi Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    3,206,810,000
   </td>
   <td>
    0.19
   </td>
  </tr>
  <tr>
   <td>
    JHC
   </td>
   <td>
    Japara Healthcare Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    599,216,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    JHX
   </td>
   <td>
    James Hardie Industries PLC Cdi 1:1
   </td>
   <td>
    Materials
   </td>
   <td>
    9,685,290,000
   </td>
   <td>
    0.58
   </td>
  </tr>
  <tr>
   <td>
    KAR
   </td>
   <td>
    Karoon Gas Australia Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    441,229,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    KMD
   </td>
   <td>
    Kathmandu Holdings Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    375,769,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    LLC
   </td>
   <td>
    Lendlease Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    8,523,310,000
   </td>
   <td>
    0.51
   </td>
  </tr>
  <tr>
   <td>
    LNG
   </td>
   <td>
    Liquefied Natural Gas Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    345,619,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    LNK
   </td>
   <td>
    Link Administration Holdings Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    2,723,670,000
   </td>
   <td>
    0.16
   </td>
  </tr>
  <tr>
   <td>
    LYC
   </td>
   <td>
    Lynas Corporation Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    257,026,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    MFG
   </td>
   <td>
    Magellan Financial Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    4,090,260,000
   </td>
   <td>
    0.24
   </td>
  </tr>
  <tr>
   <td>
    MGC
   </td>
   <td>
    MG Unit Trust Units
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    189,497,000
   </td>
   <td>
    0.01
   </td>
  </tr>
  <tr>
   <td>
    MGR
   </td>
   <td>
    Mirvac Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    7,891,890,000
   </td>
   <td>
    0.47
   </td>
  </tr>
  <tr>
   <td>
    MIN
   </td>
   <td>
    Mineral Resources Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    2,266,880,000
   </td>
   <td>
    0.14
   </td>
  </tr>
  <tr>
   <td>
    MLD
   </td>
   <td>
    Maca Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    401,899,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    MLX
   </td>
   <td>
    Metals X Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    341,231,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    MMS
   </td>
   <td>
    Mcmillan Shakespeare Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    904,435,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    MND
   </td>
   <td>
    Monadelphous Group Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    1,053,870,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    MNS
   </td>
   <td>
    Magnis Resources Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    339,749,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    MOC
   </td>
   <td>
    Mortgage Choice Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    298,651,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    MPL
   </td>
   <td>
    Medibank Private Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    7,766,290,000
   </td>
   <td>
    0.46
   </td>
  </tr>
  <tr>
   <td>
    MQA
   </td>
   <td>
    Macquarie Atlas Roads Group Stapled
   </td>
   <td>
    Industrials
   </td>
   <td>
    2,677,160,000
   </td>
   <td>
    0.16
   </td>
  </tr>
  <tr>
   <td>
    MQG
   </td>
   <td>
    Macquarie Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    29,651,400,000
   </td>
   <td>
    1.78
   </td>
  </tr>
  <tr>
   <td>
    MSB
   </td>
   <td>
    Mesoblast Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    545,765,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    MTR
   </td>
   <td>
    Mantra Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    915,396,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    MTS
   </td>
   <td>
    Metcash Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    2,224,460,000
   </td>
   <td>
    0.13
   </td>
  </tr>
  <tr>
   <td>
    MVF
   </td>
   <td>
    Monash Ivf Group Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    482,561,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    MYO
   </td>
   <td>
    Myob Group Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    2,193,740,000
   </td>
   <td>
    0.13
   </td>
  </tr>
  <tr>
   <td>
    MYR
   </td>
   <td>
    Myer Holdings Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,133,360,000
   </td>
   <td>
    0.07
   </td>
  </tr>
  <tr>
   <td>
    MYX
   </td>
   <td>
    Mayne Pharma Group Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    2,016,060,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    NAB
   </td>
   <td>
    National Australia Bank Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    81,896,800,000
   </td>
   <td>
    4.9
   </td>
  </tr>
  <tr>
   <td>
    NAN
   </td>
   <td>
    Nanosonics Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    925,950,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    NCM
   </td>
   <td>
    Newcrest Mining Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    15,526,400,000
   </td>
   <td>
    0.93
   </td>
  </tr>
  <tr>
   <td>
    NEC
   </td>
   <td>
    Nine Entertainment Co. Holdings Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    928,012,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    NHF
   </td>
   <td>
    Nib Holdings Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    2,085,270,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    NSR
   </td>
   <td>
    National Storage Reit Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    752,272,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    NST
   </td>
   <td>
    Northern Star Resources LTD
   </td>
   <td>
    Materials
   </td>
   <td>
    2,173,960,000
   </td>
   <td>
    0.13
   </td>
  </tr>
  <tr>
   <td>
    NTC
   </td>
   <td>
    Netcomm Wireless Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    314,609,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    NUF
   </td>
   <td>
    Nufarm Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    2,443,350,000
   </td>
   <td>
    0.15
   </td>
  </tr>
  <tr>
   <td>
    NVT
   </td>
   <td>
    Navitas Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,809,900,000
   </td>
   <td>
    0.11
   </td>
  </tr>
  <tr>
   <td>
    NWS
   </td>
   <td>
    News Corporation. B Voting
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    713,820,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    NXT
   </td>
   <td>
    Nextdc Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    1,034,020,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    OFX
   </td>
   <td>
    OFX Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    403,200,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    OGC
   </td>
   <td>
    Oceanagold Corporation Cdi 1:1
   </td>
   <td>
    Materials
   </td>
   <td>
    2,566,080,000
   </td>
   <td>
    0.15
   </td>
  </tr>
  <tr>
   <td>
    OML
   </td>
   <td>
    Ooh!media Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    750,111,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    ORA
   </td>
   <td>
    Orora Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    3,607,990,000
   </td>
   <td>
    0.22
   </td>
  </tr>
  <tr>
   <td>
    ORE
   </td>
   <td>
    Orocobre Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    952,752,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    ORG
   </td>
   <td>
    Origin Energy Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    11,564,700,000
   </td>
   <td>
    0.69
   </td>
  </tr>
  <tr>
   <td>
    ORI
   </td>
   <td>
    Orica Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    6,650,790,000
   </td>
   <td>
    0.4
   </td>
  </tr>
  <tr>
   <td>
    OSH
   </td>
   <td>
    Oil Search Limited 10T
   </td>
   <td>
    Energy
   </td>
   <td>
    10,917,700,000
   </td>
   <td>
    0.65
   </td>
  </tr>
  <tr>
   <td>
    OZL
   </td>
   <td>
    Oz Minerals Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    2,394,380,000
   </td>
   <td>
    0.14
   </td>
  </tr>
  <tr>
   <td>
    PDN
   </td>
   <td>
    Paladin Energy LTD
   </td>
   <td>
    Energy
   </td>
   <td>
    147,305,000
   </td>
   <td>
    0.01
   </td>
  </tr>
  <tr>
   <td>
    PGH
   </td>
   <td>
    Pact Group Holdings LTD
   </td>
   <td>
    Materials
   </td>
   <td>
    2,019,830,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    PLS
   </td>
   <td>
    Pilbara Minerals Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    631,223,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    PMV
   </td>
   <td>
    Premier Investments Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    2,273,320,000
   </td>
   <td>
    0.14
   </td>
  </tr>
  <tr>
   <td>
    PPT
   </td>
   <td>
    Perpetual Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    2,270,970,000
   </td>
   <td>
    0.14
   </td>
  </tr>
  <tr>
   <td>
    PRG
   </td>
   <td>
    Programmed Maintenance Services Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    495,320,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    PRU
   </td>
   <td>
    Perseus Mining Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    345,659,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    PRY
   </td>
   <td>
    Primary Health Care Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    2,127,450,000
   </td>
   <td>
    0.13
   </td>
  </tr>
  <tr>
   <td>
    PTM
   </td>
   <td>
    Platinum Asset Management Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    3,097,660,000
   </td>
   <td>
    0.19
   </td>
  </tr>
  <tr>
   <td>
    QAN
   </td>
   <td>
    Qantas Airways Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    6,154,980,000
   </td>
   <td>
    0.37
   </td>
  </tr>
  <tr>
   <td>
    QBE
   </td>
   <td>
    QBE Insurance Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    17,035,200,000
   </td>
   <td>
    1.02
   </td>
  </tr>
  <tr>
   <td>
    QUB
   </td>
   <td>
    Qube Holdings Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    3,542,670,000
   </td>
   <td>
    0.21
   </td>
  </tr>
  <tr>
   <td>
    RCG
   </td>
   <td>
    RCG Corporation Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    803,817,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    RCR
   </td>
   <td>
    RCR Tomlinson Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    384,899,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    REA
   </td>
   <td>
    REA Group LTD
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    7,274,600,000
   </td>
   <td>
    0.44
   </td>
  </tr>
  <tr>
   <td>
    REG
   </td>
   <td>
    Regis Healthcare Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    1,375,640,000
   </td>
   <td>
    0.08
   </td>
  </tr>
  <tr>
   <td>
    RFF
   </td>
   <td>
    Rural Funds Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    361,802,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    RFG
   </td>
   <td>
    Retail Food Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,235,900,000
   </td>
   <td>
    0.07
   </td>
  </tr>
  <tr>
   <td>
    RHC
   </td>
   <td>
    Ramsay Health Care Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    13,802,100,000
   </td>
   <td>
    0.83
   </td>
  </tr>
  <tr>
   <td>
    RIC
   </td>
   <td>
    Ridley Corporation Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    384,771,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    RIO
   </td>
   <td>
    RIO Tinto Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    25,409,100,000
   </td>
   <td>
    1.52
   </td>
  </tr>
  <tr>
   <td>
    RMD
   </td>
   <td>
    Resmed Inc Cdi 10:1
   </td>
   <td>
    Health Care
   </td>
   <td>
    12,088,200,000
   </td>
   <td>
    0.72
   </td>
  </tr>
  <tr>
   <td>
    RRL
   </td>
   <td>
    Regis Resources Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    1,487,950,000
   </td>
   <td>
    0.09
   </td>
  </tr>
  <tr>
   <td>
    RSG
   </td>
   <td>
    Resolute Mining Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    958,078,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    RWC
   </td>
   <td>
    Reliance Worldwide Corporation Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    1,680,000,000
   </td>
   <td>
    0.1
   </td>
  </tr>
  <tr>
   <td>
    S32
   </td>
   <td>
    SOUTH32 Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    14,640,300,000
   </td>
   <td>
    0.88
   </td>
  </tr>
  <tr>
   <td>
    SAR
   </td>
   <td>
    Saracen Mineral Holdings Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    799,048,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    SBM
   </td>
   <td>
    ST Barbara Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    1,014,560,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    SCG
   </td>
   <td>
    Scentre Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    24,704,700,000
   </td>
   <td>
    1.48
   </td>
  </tr>
  <tr>
   <td>
    SCP
   </td>
   <td>
    Shopping Centres Australasia Property Group Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    1,622,440,000
   </td>
   <td>
    0.1
   </td>
  </tr>
  <tr>
   <td>
    SDA
   </td>
   <td>
    Speedcast International Limited
   </td>
   <td>
    Telecommunication Services
   </td>
   <td>
    831,140,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    SDF
   </td>
   <td>
    Steadfast Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    1,656,950,000
   </td>
   <td>
    0.1
   </td>
  </tr>
  <tr>
   <td>
    SEH
   </td>
   <td>
    Sino Gas &amp; Energy Holdings Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    238,553,000
   </td>
   <td>
    0.01
   </td>
  </tr>
  <tr>
   <td>
    SEK
   </td>
   <td>
    Seek Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    5,175,350,000
   </td>
   <td>
    0.31
   </td>
  </tr>
  <tr>
   <td>
    SFR
   </td>
   <td>
    Sandfire Resources NL
   </td>
   <td>
    Materials
   </td>
   <td>
    889,630,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    SGF
   </td>
   <td>
    SG Fleet Group Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    842,593,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    SGM
   </td>
   <td>
    Sims Metal Management Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    2,533,180,000
   </td>
   <td>
    0.15
   </td>
  </tr>
  <tr>
   <td>
    SGP
   </td>
   <td>
    Stockland Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    11,015,100,000
   </td>
   <td>
    0.66
   </td>
  </tr>
  <tr>
   <td>
    SGR
   </td>
   <td>
    The Star Entertainment Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    4,268,730,000
   </td>
   <td>
    0.26
   </td>
  </tr>
  <tr>
   <td>
    SHL
   </td>
   <td>
    Sonic Healthcare Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    8,908,830,000
   </td>
   <td>
    0.53
   </td>
  </tr>
  <tr>
   <td>
    SHV
   </td>
   <td>
    Select Harvests Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    487,950,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    SIP
   </td>
   <td>
    Sigma Pharmaceuticals Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    1,390,650,000
   </td>
   <td>
    0.08
   </td>
  </tr>
  <tr>
   <td>
    SIQ
   </td>
   <td>
    Smartgroup Corporation LTD
   </td>
   <td>
    Industrials
   </td>
   <td>
    762,939,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    SIV
   </td>
   <td>
    Silver Chef Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    319,297,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    SKC
   </td>
   <td>
    Skycity Entertainment Group Limited NZX
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    2,486,980,000
   </td>
   <td>
    0.15
   </td>
  </tr>
  <tr>
   <td>
    SKI
   </td>
   <td>
    Spark Infrastructure Group Forus
   </td>
   <td>
    Utilities
   </td>
   <td>
    4,003,190,000
   </td>
   <td>
    0.24
   </td>
  </tr>
  <tr>
   <td>
    SKT
   </td>
   <td>
    SKY Network Television Limited NZ
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,723,890,000
   </td>
   <td>
    0.1
   </td>
  </tr>
  <tr>
   <td>
    SLK
   </td>
   <td>
    Sealink Travel Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    464,297,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    SPK
   </td>
   <td>
    Spark New Zealand Limited NZX
   </td>
   <td>
    Telecommunication Services
   </td>
   <td>
    6,029,170,000
   </td>
   <td>
    0.36
   </td>
  </tr>
  <tr>
   <td>
    SPL
   </td>
   <td>
    Starpharma Holdings Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    267,189,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    SPO
   </td>
   <td>
    Spotless Group Holdings Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    1,087,310,000
   </td>
   <td>
    0.07
   </td>
  </tr>
  <tr>
   <td>
    SRX
   </td>
   <td>
    Sirtex Medical Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    817,559,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    SSM
   </td>
   <td>
    Service Stream Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    401,708,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    STO
   </td>
   <td>
    Santos Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    8,168,810,000
   </td>
   <td>
    0.49
   </td>
  </tr>
  <tr>
   <td>
    SUL
   </td>
   <td>
    Super Retail Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    2,041,430,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    SUN
   </td>
   <td>
    Suncorp Group Limited
   </td>
   <td>
    Financials
   </td>
   <td>
    17,443,500,000
   </td>
   <td>
    1.04
   </td>
  </tr>
  <tr>
   <td>
    SVW
   </td>
   <td>
    Seven Group Holdings Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    2,204,930,000
   </td>
   <td>
    0.13
   </td>
  </tr>
  <tr>
   <td>
    SWM
   </td>
   <td>
    Seven West Media Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,213,970,000
   </td>
   <td>
    0.07
   </td>
  </tr>
  <tr>
   <td>
    SXL
   </td>
   <td>
    Southern Cross Media Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,188,130,000
   </td>
   <td>
    0.07
   </td>
  </tr>
  <tr>
   <td>
    SXY
   </td>
   <td>
    Senex Energy Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    305,906,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    SYD
   </td>
   <td>
    Sydney Airport Forus
   </td>
   <td>
    Industrials
   </td>
   <td>
    13,476,500,000
   </td>
   <td>
    0.81
   </td>
  </tr>
  <tr>
   <td>
    SYR
   </td>
   <td>
    Syrah Resources Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    804,460,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    TAH
   </td>
   <td>
    Tabcorp Holdings Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    4,017,630,000
   </td>
   <td>
    0.24
   </td>
  </tr>
  <tr>
   <td>
    TCL
   </td>
   <td>
    Transurban Group Stapled
   </td>
   <td>
    Industrials
   </td>
   <td>
    21,081,100,000
   </td>
   <td>
    1.26
   </td>
  </tr>
  <tr>
   <td>
    TEN
   </td>
   <td>
    TEN Network Holdings Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    334,995,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    TFC
   </td>
   <td>
    TFS Corporation Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    647,732,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    TGA
   </td>
   <td>
    Thorn Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    300,588,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    TGR
   </td>
   <td>
    Tassal Group Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    623,669,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    TIX
   </td>
   <td>
    360 Capital Industrial Fund Ord Unit
   </td>
   <td>
    Real Estate
   </td>
   <td>
    532,013,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    TLS
   </td>
   <td>
    Telstra Corporation Limited
   </td>
   <td>
    Telecommunication Services
   </td>
   <td>
    60,911,800,000
   </td>
   <td>
    3.65
   </td>
  </tr>
  <tr>
   <td>
    TME
   </td>
   <td>
    Trade Me Group Limited NZX
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,926,230,000
   </td>
   <td>
    0.12
   </td>
  </tr>
  <tr>
   <td>
    TNE
   </td>
   <td>
    Technology One Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    1,770,140,000
   </td>
   <td>
    0.11
   </td>
  </tr>
  <tr>
   <td>
    TOX
   </td>
   <td>
    TOX Free Solutions Limited
   </td>
   <td>
    Industrials
   </td>
   <td>
    502,320,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    TPM
   </td>
   <td>
    TPG Telecom Limited
   </td>
   <td>
    Telecommunication Services
   </td>
   <td>
    5,786,590,000
   </td>
   <td>
    0.35
   </td>
  </tr>
  <tr>
   <td>
    TRS
   </td>
   <td>
    The Reject Shop Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    244,729,000
   </td>
   <td>
    0.01
   </td>
  </tr>
  <tr>
   <td>
    TTS
   </td>
   <td>
    Tatts Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    6,578,970,000
   </td>
   <td>
    0.39
   </td>
  </tr>
  <tr>
   <td>
    TWE
   </td>
   <td>
    Treasury Wine Estates Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    7,883,280,000
   </td>
   <td>
    0.47
   </td>
  </tr>
  <tr>
   <td>
    VCX
   </td>
   <td>
    Vicinity Centres Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    11,836,400,000
   </td>
   <td>
    0.71
   </td>
  </tr>
  <tr>
   <td>
    VLW
   </td>
   <td>
    Villa World Limited
   </td>
   <td>
    Real Estate
   </td>
   <td>
    258,995,000
   </td>
   <td>
    0.02
   </td>
  </tr>
  <tr>
   <td>
    VOC
   </td>
   <td>
    Vocus Communications Limited
   </td>
   <td>
    Telecommunication Services
   </td>
   <td>
    2,400,770,000
   </td>
   <td>
    0.14
   </td>
  </tr>
  <tr>
   <td>
    VRL
   </td>
   <td>
    Village Roadshow Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    737,762,000
   </td>
   <td>
    0.04
   </td>
  </tr>
  <tr>
   <td>
    VRT
   </td>
   <td>
    Virtus Health Limited
   </td>
   <td>
    Health Care
   </td>
   <td>
    501,551,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    VTG
   </td>
   <td>
    Vita Group Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    490,858,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    VVR
   </td>
   <td>
    Viva Energy Reit Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    1,656,360,000
   </td>
   <td>
    0.1
   </td>
  </tr>
  <tr>
   <td>
    WBA
   </td>
   <td>
    Webster Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    474,619,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    WBC
   </td>
   <td>
    Westpac Banking Corporation
   </td>
   <td>
    Financials
   </td>
   <td>
    109,426,000,000
   </td>
   <td>
    6.55
   </td>
  </tr>
  <tr>
   <td>
    WEB
   </td>
   <td>
    Webjet Limited
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,037,770,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    WES
   </td>
   <td>
    Wesfarmers Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    47,657,800,000
   </td>
   <td>
    2.85
   </td>
  </tr>
  <tr>
   <td>
    WFD
   </td>
   <td>
    Westfield Corporation Stapled
   </td>
   <td>
    Real Estate
   </td>
   <td>
    19,492,500,000
   </td>
   <td>
    1.17
   </td>
  </tr>
  <tr>
   <td>
    WGX
   </td>
   <td>
    Westgold Resources Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    502,708,000
   </td>
   <td>
    0.03
   </td>
  </tr>
  <tr>
   <td>
    WHC
   </td>
   <td>
    Whitehaven Coal Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    2,677,980,000
   </td>
   <td>
    0.16
   </td>
  </tr>
  <tr>
   <td>
    WOR
   </td>
   <td>
    Worleyparsons Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    2,395,430,000
   </td>
   <td>
    0.14
   </td>
  </tr>
  <tr>
   <td>
    WOW
   </td>
   <td>
    Woolworths Limited
   </td>
   <td>
    Consumer Staples
   </td>
   <td>
    31,044,700,000
   </td>
   <td>
    1.86
   </td>
  </tr>
  <tr>
   <td>
    WPL
   </td>
   <td>
    Woodside Petroleum Limited
   </td>
   <td>
    Energy
   </td>
   <td>
    26,250,600,000
   </td>
   <td>
    1.57
   </td>
  </tr>
  <tr>
   <td>
    WPP
   </td>
   <td>
    WPP Aunz LTD
   </td>
   <td>
    Consumer Discretionary
   </td>
   <td>
    1,031,100,000
   </td>
   <td>
    0.06
   </td>
  </tr>
  <tr>
   <td>
    WSA
   </td>
   <td>
    Western Areas Limited
   </td>
   <td>
    Materials
   </td>
   <td>
    835,754,000
   </td>
   <td>
    0.05
   </td>
  </tr>
  <tr>
   <td>
    WTC
   </td>
   <td>
    Wisetech Global Limited
   </td>
   <td>
    Information Technology
   </td>
   <td>
    1,642,050,000
   </td>
   <td>
    0.1
   </td>
  </tr>
 </tbody>
</table>
<hr/>
<p>
</p>
<h2>
 2016 Archived Lists
</h2>
<p>
 <a href="/wp-content/uploads/csv/20161201-asx300.csv">
  1 December
 </a>
 <br/>
 <a href="/wp-content/uploads/csv/20161101-asx300.csv">
  1 November
 </a>
 <br/>
 <a href="/wp-content/uploads/csv/20161010-asx300.csv">
  10 October
 </a>
 <br/>
 <a href="/wp-content/uploads/csv/20160901-asx300.csv">
  1 September
 </a>
 <br/>
 <a href="/wp-content/uploads/csv/20160807-asx300.csv">
  7 August
 </a>
</p>
<hr/>
<p>
</p>
<h2 class="p1">
 <span class="s1" id="sector-breakdown">
  <b>
   Sector breakdown
  </b>
 </span>
</h2>
<p class="p1">
 All S&amp;P/ASX Indices use the Global Industry Classification Standard (GICS) to categorise constituents according to their principal business activity.
</p>
<p>
 Data updated: 10 October 2016
</p>
<p class="mobile-only">
 See the Excel spreadsheet for Sector Breakdown data.
</p>
<div>
 <p>
  <!--Div that will hold the pie chart-->
 </p>
 <div id="chart_div_pie" style="height: 300px;">
 </div>
</div>
<h2 class="p1">
</h2>
<h2 class="p1">
</h2>
<h2 class="p1">
 <b>
 </b>
</h2>
<h2 class="p1">
 <span class="s1" id="fundamentals">
  <b>
   PE Ratio &amp; Dividend Yield
  </b>
 </span>
</h2>
<p class="p1">
 Fundamental data for the S&amp;P/ASX 300 Index is weight-adjusted by market capitalisation. Companies with zero or negative values are ignored.
</p>
<p class="p1">
 Data updated: 7 August 2016
</p>
<p>
 <!--Div that will hold the pie chart-->
</p>
<div id="chart_div_column">
</div>
<p>
</p>
<h2 class="p1">
 <span class="s1" id="etf">
  <b>
   Exchange Traded Fund (ETF)
  </b>
 </span>
</h2>
<p class="p1">
 ETFs are managed funds that track a benchmark. They trade on the ASX like ordinary shares using their ticker code. The goal of an index fund is to replicate the performance of the underlying index, less fees and expenses.
</p>
<p class="p1">
 As at 10 October 2016, the Vanguard Australian Shares Index ETF (VAS)
</p>
<span class="s1">
 is the only ETF that tracks the performance of the S&amp;P/ASX 300 Index.
</span>
<div class="twocol-one">
 <table class="etf">
  <tbody>
   <tr>
    <th colspan="2">
     Vanguard Australian Shares Index ETF (VAS)
    </th>
   </tr>
   <tr>
    <td>
     Manager:
    </td>
    <td>
     Vanguard
    </td>
   </tr>
   <tr>
    <td>
     Inception:
    </td>
    <td>
     4 May 2009
    </td>
   </tr>
   <tr>
    <td>
     Mgmt Fee:
    </td>
    <td>
     0.15%
    </td>
   </tr>
   <tr>
    <td>
     Fact Sheet:
    </td>
    <td>
     <a href="https://static.vgcontent.info/crp/intl/auw/docs/etfs/profiles/VAS_profile.pdf?20160721|091500" target="_blank">
      Link
     </a>
    </td>
   </tr>
  </tbody>
 </table>
</div>
<div class="twocol-one last">
 <p>
  <center>
   <strong>
    VAS vs S&amp;P/ASX 300 Index
   </strong>
  </center>
  <br/>
  <a data-rel="lightbox" href="https://chart.finance.yahoo.com/z?s=VAS.AX&amp;t=1y&amp;q=l&amp;l=off&amp;z=l&amp;c=%5EAXKO">
   <img alt="ASX300 Index fund ETF vs S&amp;P/ASX 300 Index" src="https://chart.finance.yahoo.com/z?s=VAS.AX&amp;t=1y&amp;q=l&amp;l=on&amp;z=l&amp;c=%5EAXKO&amp;a=s&amp;lang=en-AU&amp;region=AU" width="360"/>
  </a>
 </p>
</div>
<p>
</p>
<p>
</p>
<h2>
 Additional Information
</h2>
<p>
 <img class="link-icons" src="/wp-content/uploads/sandp.png">
  <a href="http://au.spindices.com/idsenhancedfactsheet/file.pdf?calcFrequency=M&amp;force_download=true&amp;indexId=124612" target="_blank">
   S&amp;P/ASX 300 FactSheet (PDF)
  </a>
 </img>
</p>
<p>
 <img class="link-icons" src="/wp-content/uploads/market-index-icon.png">
  <a href="http://www.marketindex.com.au/asx300" target="_blank">
   S&amp;P/ASX 300 Share Prices &amp; Charts
  </a>
 </img>
</p>
<!-- .entry-content -->
<!-- #post-## -->
<div class="site-sidebar" id="sidebar">
 <div class="widget widget_text" id="text-2">
  <div class="textwidget">
   <p>
    <img src="/wp-content/uploads/logo.png" style="width:120px;margin-bottom:10px;"/>
   </p>
   <p>
    ASX 300 List is an independent aggregator of publicly available S&amp;P;/ASX 300 information.
   </p>
   <p>
    Download constituent data, GICS Sectors and market capitalisation in Excel format.
   </p>
   <p>
    Created with love in Sydney.
    <a href="/contact-us">
     <font style="color:#0F7FAF">
      Contact us
     </font>
    </a>
    .
   </p>
  </div>
  <div class="clear">
  </div>
 </div>
 <div class="widget widget_text" id="text-3">
  <div class="textwidget">
   <img src="/wp-content/uploads/sandp.png" style="width:60px;float:left;margin-right:15px;"/>
   <p style="text-align:left;">
    Standard &amp; Poor's (S&amp;P;) manage the index methodology.
   </p>
  </div>
  <div class="clear">
  </div>
 </div>
 <div class="widget widget_text" id="text-4">
  <div class="textwidget">
   <img src="/wp-content/uploads/asx-logo.png" style="width:60px;float:left;margin-right:15px;"/>
   <p style="text-align:left;">
    Australian Securities Exchange (ASX) lists the companies.
   </p>
  </div>
  <div class="clear">
  </div>
 </div>
 <div class="widget widget_text" id="text-5">
  <div class="textwidget">
   <img src="/wp-content/uploads/market-index-icon.png" style="width:60px;float:left;margin-right:15px;"/>
   <p style="text-align:left;">
    Market Index provides company information and shares prices on all ASX stocks.
   </p>
  </div>
  <div class="clear">
  </div>
 </div>
</div>
<!-- #main -->
<!-- ./inner-wrap -->
<footer class="site-footer" id="colophon" role="contentinfo">
 <div class="footer-menu">
  <div class="menu-footer">
   <ul class="menu" id="menu-footer">
    <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-26" id="menu-item-26">
     <a href="https://www.asx300list.com/contact-us/">
      Contact Us
     </a>
    </li>
    <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-24" id="menu-item-24">
     <a href="https://www.asx300list.com/privacy-policy/">
      Privacy Policy
     </a>
    </li>
    <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-25" id="menu-item-25">
     <a href="https://www.asx300list.com/disclaimer/">
      Disclaimer
     </a>
    </li>
   </ul>
  </div>
 </div>
 <div class="site-info">
  Copyright © 2016 ASX300list.com
 </div>
 <!-- .site-info -->
</footer>
<!-- #colophon -->
<script>
 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
  })(window,document,'script','https://www.google-analytics.com/analytics.js','ga');

  ga('create', 'UA-26193949-5', 'auto');
  ga('send', 'pageview');
</script>
<script>
 (function($){$(document).ready(function(){});})(jQuery);
</script>
<script src="https://www.asx300list.com/wp-content/plugins/responsive-lightbox/assets/swipebox/js/jquery.swipebox.min.js?ver=1.6.10" type="text/javascript">
</script>
<script type="text/javascript">
 /* <![CDATA[ */
var rlArgs = {"script":"swipebox","selector":"lightbox","customEvents":"","activeGalleries":"1","animation":"1","hideCloseButtonOnMobile":"0","removeBarsOnMobile":"0","hideBars":"1","hideBarsDelay":"5000","videoMaxWidth":"1080","useSVG":"1","loopAtEnd":"0"};
/* ]]> */
</script>
<script src="https://www.asx300list.com/wp-content/plugins/responsive-lightbox/js/front.js?ver=1.6.10" type="text/javascript">
</script>
<script src="https://www.asx300list.com/wp-includes/js/comment-reply.min.js?ver=4.7.2" type="text/javascript">
</script>
<script src="https://www.asx300list.com/wp-content/themes/foodica/js/jquery.mmenu.min.all.js?ver=1.2.1" type="text/javascript">
</script>
<script src="https://www.asx300list.com/wp-content/themes/foodica/js/flickity.pkgd.min.js?ver=1.2.1" type="text/javascript">
</script>
<script src="https://www.asx300list.com/wp-content/themes/foodica/js/jquery.fitvids.js?ver=1.2.1" type="text/javascript">
</script>
<script src="https://www.asx300list.com/wp-content/themes/foodica/js/superfish.min.js?ver=1.2.1" type="text/javascript">
</script>
<script src="https://www.asx300list.com/wp-content/themes/foodica/js/search_button.js?ver=1.2.1" type="text/javascript">
</script>
<script type="text/javascript">
 /* <![CDATA[ */
var zoomOptions = {"slideshow_auto":"1","slideshow_speed":"3000"};
/* ]]> */
</script>
<script src="https://www.asx300list.com/wp-content/themes/foodica/js/functions.js?ver=1.2.1" type="text/javascript">
</script>
<script src="https://www.asx300list.com/wp-content/themes/foodica/functions/wpzoom/assets/js/galleria.js" type="text/javascript">
</script>
<script src="https://www.asx300list.com/wp-content/themes/foodica/functions/wpzoom/assets/js/wzslider.js" type="text/javascript">
</script>
<script src="https://www.asx300list.com/wp-includes/js/wp-embed.min.js?ver=4.7.2" type="text/javascript">
</script>


In [4]:
table = soup.find('table', {'class' : 'tableizer-table sortable'})
print(table)


<table class="tableizer-table sortable">
<thead>
<tr class="tableizer-firstrow">
<th>Code</th>
<th>Company</th>
<th>Sector</th>
<th>Market Cap</th>
<th>Weight(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2M</td>
<td>The A2 Milk Company Limited NZ</td>
<td>Consumer Staples</td>
<td>1,460,370,000</td>
<td>0.09</td>
</tr>
<tr>
<td>AAC</td>
<td>Australian Agricultural Company Limited</td>
<td>Consumer Staples</td>
<td>947,014,000</td>
<td>0.06</td>
</tr>
<tr>
<td>AAD</td>
<td>Ardent Leisure Group Stapled</td>
<td>Consumer Discretionary</td>
<td>1,097,680,000</td>
<td>0.07</td>
</tr>
<tr>
<td>ABC</td>
<td>Adelaide Brighton Limited</td>
<td>Materials</td>
<td>3,527,620,000</td>
<td>0.21</td>
</tr>
<tr>
<td>ABP</td>
<td>Abacus Property Group Stapled</td>
<td>Real Estate</td>
<td>1,728,420,000</td>
<td>0.1</td>
</tr>
<tr>
<td>ACX</td>
<td>Aconex Limited</td>
<td>Information Technology</td>
<td>1,003,640,000</td>
<td>0.06</td>
</tr>
<tr>
<td>ADH</td>
<td>Adairs Limited</td>
<td>Consumer Discretionary</td>
<td>265,400,000</td>
<td>0.02</td>
</tr>
<tr>
<td>AGI</td>
<td>Ainsworth Game Technology Limited</td>
<td>Consumer Discretionary</td>
<td>698,591,000</td>
<td>0.04</td>
</tr>
<tr>
<td>AGL</td>
<td>AGL Energy Limited</td>
<td>Utilities</td>
<td>14,851,400,000</td>
<td>0.89</td>
</tr>
<tr>
<td>AHG</td>
<td>Automotive Holdings Group Limited</td>
<td>Consumer Discretionary</td>
<td>1,309,910,000</td>
<td>0.08</td>
</tr>
<tr>
<td>AHY</td>
<td>Asaleo Care Limited</td>
<td>Consumer Staples</td>
<td>821,324,000</td>
<td>0.05</td>
</tr>
<tr>
<td>AIA</td>
<td>Auckland International Airport Limited NZX</td>
<td>Industrials</td>
<td>7,323,990,000</td>
<td>0.44</td>
</tr>
<tr>
<td>AJA</td>
<td>Astro Japan Property Group Forus</td>
<td>Real Estate</td>
<td>403,339,000</td>
<td>0.02</td>
</tr>
<tr>
<td>AJX</td>
<td>Alexium International Group Limited</td>
<td>Materials</td>
<td>184,243,000</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL</td>
<td>Aristocrat Leisure Limited</td>
<td>Consumer Discretionary</td>
<td>9,897,430,000</td>
<td>0.59</td>
</tr>
<tr>
<td>ALQ</td>
<td>Als Limited</td>
<td>Industrials</td>
<td>3,045,500,000</td>
<td>0.18</td>
</tr>
<tr>
<td>ALU</td>
<td>Altium Limited</td>
<td>Information Technology</td>
<td>1,053,450,000</td>
<td>0.06</td>
</tr>
<tr>
<td>AMA</td>
<td>AMA Group Limited</td>
<td>Consumer Discretionary</td>
<td>466,583,000</td>
<td>0.03</td>
</tr>
<tr>
<td>AMC</td>
<td>Amcor Limited</td>
<td>Materials</td>
<td>17,314,200,000</td>
<td>1.04</td>
</tr>
<tr>
<td>AMP</td>
<td>AMP Limited</td>
<td>Financials</td>
<td>14,907,000,000</td>
<td>0.89</td>
</tr>
<tr>
<td>ANN</td>
<td>Ansell Limited</td>
<td>Health Care</td>
<td>3,643,430,000</td>
<td>0.22</td>
</tr>
<tr>
<td>ANZ</td>
<td>Australia And New Zealand Banking Group Limited</td>
<td>Financials</td>
<td>89,314,200,000</td>
<td>5.35</td>
</tr>
<tr>
<td>AOG</td>
<td>Aveo Group Stapled</td>
<td>Real Estate</td>
<td>1,947,480,000</td>
<td>0.12</td>
</tr>
<tr>
<td>APA</td>
<td>APA Group Stapled</td>
<td>Utilities</td>
<td>9,549,610,000</td>
<td>0.57</td>
</tr>
<tr>
<td>API</td>
<td>Australian Pharmaceutical Industries Limited</td>
<td>Health Care</td>
<td>1,008,990,000</td>
<td>0.06</td>
</tr>
<tr>
<td>APN</td>
<td>APN News &amp; Media Limited</td>
<td>Consumer Discretionary</td>
<td>873,284,000</td>
<td>0.05</td>
</tr>
<tr>
<td>APO</td>
<td>Apn Outdoor Group Limited</td>
<td>Consumer Discretionary</td>
<td>984,692,000</td>
<td>0.06</td>
</tr>
<tr>
<td>AQG</td>
<td>Alacer Gold Corp Cdi 1:1</td>
<td>Materials</td>
<td>195,595,000</td>
<td>0.01</td>
</tr>
<tr>
<td>ARB</td>
<td>ARB Corporation Limited</td>
<td>Consumer Discretionary</td>
<td>1,397,600,000</td>
<td>0.08</td>
</tr>
<tr>
<td>ARF</td>
<td>Arena Reit Stapled</td>
<td>Real Estate</td>
<td>436,886,000</td>
<td>0.03</td>
</tr>
<tr>
<td>ASB</td>
<td>Austal Limited</td>
<td>Industrials</td>
<td>607,433,000</td>
<td>0.04</td>
</tr>
<tr>
<td>AST</td>
<td>Ausnet Services Limited</td>
<td>Utilities</td>
<td>5,692,980,000</td>
<td>0.34</td>
</tr>
<tr>
<td>ASX</td>
<td>ASX Limited</td>
<td>Financials</td>
<td>9,629,420,000</td>
<td>0.58</td>
</tr>
<tr>
<td>AVN</td>
<td>Aventus Retail Property Fund Unit</td>
<td>Real Estate</td>
<td>930,532,000</td>
<td>0.06</td>
</tr>
<tr>
<td>AWC</td>
<td>Alumina Limited</td>
<td>Materials</td>
<td>5,270,110,000</td>
<td>0.32</td>
</tr>
<tr>
<td>AWE</td>
<td>AWE Limited</td>
<td>Energy</td>
<td>327,457,000</td>
<td>0.02</td>
</tr>
<tr>
<td>AYS</td>
<td>Amaysim Australia Limited</td>
<td>Telecommunication Services</td>
<td>365,136,000</td>
<td>0.02</td>
</tr>
<tr>
<td>AZJ</td>
<td>Aurizon Holdings Limited</td>
<td>Industrials</td>
<td>10,361,300,000</td>
<td>0.62</td>
</tr>
<tr>
<td>BAL</td>
<td>Bellamy’s Australia Limited</td>
<td>Consumer Staples</td>
<td>645,866,000</td>
<td>0.04</td>
</tr>
<tr>
<td>BAP</td>
<td>Bapcor Limited</td>
<td>Consumer Discretionary</td>
<td>1,644,680,000</td>
<td>0.1</td>
</tr>
<tr>
<td>BBN</td>
<td>Baby Bunting Group Limited</td>
<td>Consumer Discretionary</td>
<td>305,501,000</td>
<td>0.02</td>
</tr>
<tr>
<td>BDR</td>
<td>Beadell Resources Limited</td>
<td>Materials</td>
<td>285,543,000</td>
<td>0.02</td>
</tr>
<tr>
<td>BEN</td>
<td>Bendigo And Adelaide Bank Limited</td>
<td>Financials</td>
<td>6,007,070,000</td>
<td>0.36</td>
</tr>
<tr>
<td>BGA</td>
<td>Bega Cheese Limited</td>
<td>Consumer Staples</td>
<td>647,036,000</td>
<td>0.04</td>
</tr>
<tr>
<td>BHP</td>
<td>BHP Billiton Limited</td>
<td>Materials</td>
<td>80,485,000,000</td>
<td>4.82</td>
</tr>
<tr>
<td>BKL</td>
<td>Blackmores Limited</td>
<td>Consumer Staples</td>
<td>1,780,460,000</td>
<td>0.11</td>
</tr>
<tr>
<td>BKW</td>
<td>Brickworks Limited</td>
<td>Materials</td>
<td>2,026,350,000</td>
<td>0.12</td>
</tr>
<tr>
<td>BLA</td>
<td>Blue SKY Alternative Investments Limited</td>
<td>Financials</td>
<td>471,915,000</td>
<td>0.03</td>
</tr>
<tr>
<td>BLD</td>
<td>Boral Limited</td>
<td>Materials</td>
<td>6,342,320,000</td>
<td>0.38</td>
</tr>
<tr>
<td>BOQ</td>
<td>Bank of Queensland Limited</td>
<td>Financials</td>
<td>4,597,540,000</td>
<td>0.28</td>
</tr>
<tr>
<td>BPT</td>
<td>Beach Energy Limited</td>
<td>Energy</td>
<td>1,585,330,000</td>
<td>0.09</td>
</tr>
<tr>
<td>BRG</td>
<td>Breville Group Limited</td>
<td>Consumer Discretionary</td>
<td>1,126,630,000</td>
<td>0.07</td>
</tr>
<tr>
<td>BSL</td>
<td>Bluescope Steel Limited</td>
<td>Materials</td>
<td>5,325,730,000</td>
<td>0.32</td>
</tr>
<tr>
<td>BTT</td>
<td>BT Investment Management Limited</td>
<td>Financials</td>
<td>3,303,480,000</td>
<td>0.2</td>
</tr>
<tr>
<td>BWP</td>
<td>BWP Trust Ord Units</td>
<td>Real Estate</td>
<td>1,920,730,000</td>
<td>0.11</td>
</tr>
<tr>
<td>BWX</td>
<td>BWX Limited</td>
<td>Consumer Staples</td>
<td>373,799,000</td>
<td>0.02</td>
</tr>
<tr>
<td>BXB</td>
<td>Brambles Limited</td>
<td>Industrials</td>
<td>19,696,700,000</td>
<td>1.18</td>
</tr>
<tr>
<td>CAB</td>
<td>Cabcharge Australia Limited</td>
<td>Industrials</td>
<td>467,271,000</td>
<td>0.03</td>
</tr>
<tr>
<td>CAR</td>
<td>Carsales.com Limited</td>
<td>Information Technology</td>
<td>2,740,040,000</td>
<td>0.16</td>
</tr>
<tr>
<td>CBA</td>
<td>Commonwealth Bank of Australia</td>
<td>Financials</td>
<td>142,007,000,000</td>
<td>8.5</td>
</tr>
<tr>
<td>CCL</td>
<td>Coca-cola Amatil Limited</td>
<td>Consumer Staples</td>
<td>7,727,530,000</td>
<td>0.46</td>
</tr>
<tr>
<td>CCP</td>
<td>Credit Corp Group Limited</td>
<td>Financials</td>
<td>849,522,000</td>
<td>0.05</td>
</tr>
<tr>
<td>CCV</td>
<td>Cash Converters International</td>
<td>Consumer Discretionary</td>
<td>165,171,000</td>
<td>0.01</td>
</tr>
<tr>
<td>CDD</td>
<td>Cardno Limited</td>
<td>Industrials</td>
<td>453,212,000</td>
<td>0.03</td>
</tr>
<tr>
<td>CGC</td>
<td>Costa Group Holdings Limited</td>
<td>Consumer Staples</td>
<td>1,097,640,000</td>
<td>0.07</td>
</tr>
<tr>
<td>CGF</td>
<td>Challenger Limited</td>
<td>Financials</td>
<td>6,425,600,000</td>
<td>0.38</td>
</tr>
<tr>
<td>CHC</td>
<td>Charter Hall Group Forus</td>
<td>Real Estate</td>
<td>1,956,280,000</td>
<td>0.12</td>
</tr>
<tr>
<td>CIM</td>
<td>Cimic Group Limited</td>
<td>Industrials</td>
<td>11,329,400,000</td>
<td>0.68</td>
</tr>
<tr>
<td>CKF</td>
<td>Collins Foods Limited</td>
<td>Consumer Discretionary</td>
<td>629,886,000</td>
<td>0.04</td>
</tr>
<tr>
<td>CL1</td>
<td>Class Limited</td>
<td>Information Technology</td>
<td>334,165,000</td>
<td>0.02</td>
</tr>
<tr>
<td>CMW</td>
<td>Cromwell Property Group Stapled</td>
<td>Real Estate</td>
<td>1,732,510,000</td>
<td>0.1</td>
</tr>
<tr>
<td>CNU</td>
<td>Chorus Limited NZX</td>
<td>Telecommunication Services</td>
<td>1,558,770,000</td>
<td>0.09</td>
</tr>
<tr>
<td>COH</td>
<td>Cochlear Limited</td>
<td>Health Care</td>
<td>7,037,640,000</td>
<td>0.42</td>
</tr>
<tr>
<td>CPU</td>
<td>Computershare Limited</td>
<td>Information Technology</td>
<td>6,807,220,000</td>
<td>0.41</td>
</tr>
<tr>
<td>CQR</td>
<td>Charter Hall Retail Reit Unit</td>
<td>Real Estate</td>
<td>1,718,180,000</td>
<td>0.1</td>
</tr>
<tr>
<td>CSL</td>
<td>CSL Limited</td>
<td>Health Care</td>
<td>45,783,800,000</td>
<td>2.74</td>
</tr>
<tr>
<td>CSR</td>
<td>CSR Limited</td>
<td>Materials</td>
<td>2,330,700,000</td>
<td>0.14</td>
</tr>
<tr>
<td>CSV</td>
<td>CSG Limited</td>
<td>Information Technology</td>
<td>233,404,000</td>
<td>0.01</td>
</tr>
<tr>
<td>CTD</td>
<td>Corporate Travel Management Limited</td>
<td>Consumer Discretionary</td>
<td>1,823,200,000</td>
<td>0.11</td>
</tr>
<tr>
<td>CTX</td>
<td>Caltex Australia Limited</td>
<td>Energy</td>
<td>7,944,290,000</td>
<td>0.48</td>
</tr>
<tr>
<td>CVO</td>
<td>Cover-more Group Limited</td>
<td>Financials</td>
<td>731,311,000</td>
<td>0.04</td>
</tr>
<tr>
<td>CWN</td>
<td>Crown Resorts Limited</td>
<td>Consumer Discretionary</td>
<td>8,434,800,000</td>
<td>0.51</td>
</tr>
<tr>
<td>CWP</td>
<td>Cedar Woods Properties Limited</td>
<td>Real Estate</td>
<td>398,403,000</td>
<td>0.02</td>
</tr>
<tr>
<td>CWY</td>
<td>Cleanaway Waste Management Limited</td>
<td>Industrials</td>
<td>1,956,840,000</td>
<td>0.12</td>
</tr>
<tr>
<td>CYB</td>
<td>CYBG PLC Cdi 1:1</td>
<td>Financials</td>
<td>3,596,910,000</td>
<td>0.22</td>
</tr>
<tr>
<td>DCN</td>
<td>Dacian Gold Limited</td>
<td>Materials</td>
<td>301,351,000</td>
<td>0.02</td>
</tr>
<tr>
<td>DLX</td>
<td>Duluxgroup Limited</td>
<td>Materials</td>
<td>2,428,920,000</td>
<td>0.15</td>
</tr>
<tr>
<td>DMP</td>
<td>Domino’s Pizza Enterprises Limited</td>
<td>Consumer Discretionary</td>
<td>5,773,160,000</td>
<td>0.35</td>
</tr>
<tr>
<td>DNA</td>
<td>Donaco International Limited</td>
<td>Consumer Discretionary</td>
<td>303,392,000</td>
<td>0.02</td>
</tr>
<tr>
<td>DOW</td>
<td>Downer Edi Limited</td>
<td>Industrials</td>
<td>2,586,940,000</td>
<td>0.15</td>
</tr>
<tr>
<td>DRM</td>
<td>Doray Minerals Limited</td>
<td>Materials</td>
<td>153,476,000</td>
<td>0.01</td>
</tr>
<tr>
<td>DUE</td>
<td>Duet Group Forus</td>
<td>Utilities</td>
<td>6,666,540,000</td>
<td>0.4</td>
</tr>
<tr>
<td>DXS</td>
<td>Dexus Property Group Stapled</td>
<td>Real Estate</td>
<td>9,311,660,000</td>
<td>0.56</td>
</tr>
<tr>
<td>ECX</td>
<td>Eclipx Group Limited</td>
<td>Financials</td>
<td>991,813,000</td>
<td>0.06</td>
</tr>
<tr>
<td>EHE</td>
<td>Estia Health Limited</td>
<td>Health Care</td>
<td>594,709,000</td>
<td>0.04</td>
</tr>
<tr>
<td>ELD</td>
<td>Elders Limited</td>
<td>Consumer Staples</td>
<td>452,022,000</td>
<td>0.03</td>
</tr>
<tr>
<td>EML</td>
<td>EML Payments Limited</td>
<td>Financials</td>
<td>448,920,000</td>
<td>0.03</td>
</tr>
<tr>
<td>EPW</td>
<td>Erm Power Limited</td>
<td>Utilities</td>
<td>323,986,000</td>
<td>0.02</td>
</tr>
<tr>
<td>EQT</td>
<td>EQT Holdings Limited</td>
<td>Financials</td>
<td>350,966,000</td>
<td>0.02</td>
</tr>
<tr>
<td>EVN</td>
<td>Evolution Mining Limited</td>
<td>Materials</td>
<td>3,561,030,000</td>
<td>0.21</td>
</tr>
<tr>
<td>EWC</td>
<td>Energy World Corporation LTD</td>
<td>Utilities</td>
<td>450,883,000</td>
<td>0.03</td>
</tr>
<tr>
<td>FAR</td>
<td>FAR Limited</td>
<td>Energy</td>
<td>334,615,000</td>
<td>0.02</td>
</tr>
<tr>
<td>FBU</td>
<td>Fletcher Building Limited NZX</td>
<td>Materials</td>
<td>7,168,870,000</td>
<td>0.43</td>
</tr>
<tr>
<td>FET</td>
<td>Folkestone Education Trust Unit</td>
<td>Real Estate</td>
<td>633,272,000</td>
<td>0.04</td>
</tr>
<tr>
<td>FLT</td>
<td>Flight Centre Travel Group Limited</td>
<td>Consumer Discretionary</td>
<td>3,160,500,000</td>
<td>0.19</td>
</tr>
<tr>
<td>FMG</td>
<td>Fortescue Metals Group LTD</td>
<td>Materials</td>
<td>18,340,300,000</td>
<td>1.1</td>
</tr>
<tr>
<td>FNP</td>
<td>Freedom Foods Group Limited</td>
<td>Consumer Staples</td>
<td>865,644,000</td>
<td>0.05</td>
</tr>
<tr>
<td>FPH</td>
<td>Fisher &amp; Paykel Healthcare Corporation Limited NZX</td>
<td>Health Care</td>
<td>4,647,370,000</td>
<td>0.28</td>
</tr>
<tr>
<td>FSF</td>
<td>Fonterra Shareholders’ Fund Unit NZX</td>
<td>Consumer Staples</td>
<td>697,194,000</td>
<td>0.04</td>
</tr>
<tr>
<td>FXJ</td>
<td>Fairfax Media Limited</td>
<td>Consumer Discretionary</td>
<td>2,046,530,000</td>
<td>0.12</td>
</tr>
<tr>
<td>FXL</td>
<td>Flexigroup Limited</td>
<td>Financials</td>
<td>841,515,000</td>
<td>0.05</td>
</tr>
<tr>
<td>GBT</td>
<td>GBST Holdings Limited</td>
<td>Information Technology</td>
<td>255,150,000</td>
<td>0.02</td>
</tr>
<tr>
<td>GDI</td>
<td>GDI Property Group Stapled</td>
<td>Real Estate</td>
<td>533,431,000</td>
<td>0.03</td>
</tr>
<tr>
<td>GEM</td>
<td>G8 Education Limited</td>
<td>Consumer Discretionary</td>
<td>1,373,220,000</td>
<td>0.08</td>
</tr>
<tr>
<td>GHC</td>
<td>Generation Healthcare Reit Units</td>
<td>Real Estate</td>
<td>421,122,000</td>
<td>0.03</td>
</tr>
<tr>
<td>GMA</td>
<td>Genworth Mortgage Insurance Australia Limited</td>
<td>Financials</td>
<td>1,665,620,000</td>
<td>0.1</td>
</tr>
<tr>
<td>GMG</td>
<td>Goodman Group Stapled</td>
<td>Real Estate</td>
<td>12,756,400,000</td>
<td>0.76</td>
</tr>
<tr>
<td>GNC</td>
<td>Graincorp Limited</td>
<td>Consumer Staples</td>
<td>2,187,860,000</td>
<td>0.13</td>
</tr>
<tr>
<td>GOR</td>
<td>Gold Road Resources Limited</td>
<td>Materials</td>
<td>500,853,000</td>
<td>0.03</td>
</tr>
<tr>
<td>GOZ</td>
<td>Growthpoint Properties Australia Stapled</td>
<td>Real Estate</td>
<td>2,103,870,000</td>
<td>0.13</td>
</tr>
<tr>
<td>GPT</td>
<td>GPT Group Stapled</td>
<td>Real Estate</td>
<td>9,043,720,000</td>
<td>0.54</td>
</tr>
<tr>
<td>GTY</td>
<td>Gateway Lifestyle Group Stapled</td>
<td>Real Estate</td>
<td>646,699,000</td>
<td>0.04</td>
</tr>
<tr>
<td>GUD</td>
<td>G.u.d. Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>897,693,000</td>
<td>0.05</td>
</tr>
<tr>
<td>GWA</td>
<td>GWA Group Limited</td>
<td>Industrials</td>
<td>781,285,000</td>
<td>0.05</td>
</tr>
<tr>
<td>GXL</td>
<td>Greencross Limited</td>
<td>Consumer Discretionary</td>
<td>796,804,000</td>
<td>0.05</td>
</tr>
<tr>
<td>GXY</td>
<td>Galaxy Resources Limited</td>
<td>Materials</td>
<td>962,087,000</td>
<td>0.06</td>
</tr>
<tr>
<td>HFA</td>
<td>HFA Holdings Limited</td>
<td>Financials</td>
<td>389,155,000</td>
<td>0.02</td>
</tr>
<tr>
<td>HFR</td>
<td>Highfield Resources Limited</td>
<td>Materials</td>
<td>427,495,000</td>
<td>0.03</td>
</tr>
<tr>
<td>HGG</td>
<td>Henderson Group PLC Cdi 1:1</td>
<td>Financials</td>
<td>2,875,710,000</td>
<td>0.17</td>
</tr>
<tr>
<td>HPI</td>
<td>Hotel Property Investments Stapled</td>
<td>Real Estate</td>
<td>414,939,000</td>
<td>0.02</td>
</tr>
<tr>
<td>HSN</td>
<td>Hansen Technologies Limited</td>
<td>Information Technology</td>
<td>712,165,000</td>
<td>0.04</td>
</tr>
<tr>
<td>HSO</td>
<td>Healthscope Limited</td>
<td>Health Care</td>
<td>3,973,360,000</td>
<td>0.24</td>
</tr>
<tr>
<td>HVN</td>
<td>Harvey Norman Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>5,718,530,000</td>
<td>0.34</td>
</tr>
<tr>
<td>IAG</td>
<td>Insurance Australia Group Limited</td>
<td>Financials</td>
<td>14,181,500,000</td>
<td>0.85</td>
</tr>
<tr>
<td>IDR</td>
<td>Industria Reit Stapled</td>
<td>Real Estate</td>
<td>342,539,000</td>
<td>0.02</td>
</tr>
<tr>
<td>IEL</td>
<td>Idp Education Limited</td>
<td>Consumer Discretionary</td>
<td>998,677,000</td>
<td>0.06</td>
</tr>
<tr>
<td>IFL</td>
<td>Ioof Holdings Limited</td>
<td>Financials</td>
<td>2,764,230,000</td>
<td>0.17</td>
</tr>
<tr>
<td>IFM</td>
<td>Infomedia LTD</td>
<td>Information Technology</td>
<td>226,901,000</td>
<td>0.01</td>
</tr>
<tr>
<td>IFN</td>
<td>Infigen Energy Stapled</td>
<td>Utilities</td>
<td>702,520,000</td>
<td>0.04</td>
</tr>
<tr>
<td>IGO</td>
<td>Independence Group NL</td>
<td>Materials</td>
<td>2,534,540,000</td>
<td>0.15</td>
</tr>
<tr>
<td>ILU</td>
<td>Iluka Resources Limited</td>
<td>Materials</td>
<td>3,043,950,000</td>
<td>0.18</td>
</tr>
<tr>
<td>IMF</td>
<td>IMF Bentham Limited</td>
<td>Financials</td>
<td>299,584,000</td>
<td>0.02</td>
</tr>
<tr>
<td>INA</td>
<td>Ingenia Communities Group Stapled</td>
<td>Real Estate</td>
<td>476,268,000</td>
<td>0.03</td>
</tr>
<tr>
<td>INM</td>
<td>Iron Mountain Incorporated Cdi 1:1</td>
<td>Real Estate</td>
<td>2,146,340,000</td>
<td>0.13</td>
</tr>
<tr>
<td>IOF</td>
<td>Investa Office Fund Stapled</td>
<td>Real Estate</td>
<td>2,898,300,000</td>
<td>0.17</td>
</tr>
<tr>
<td>IPD</td>
<td>Impedimed Limited</td>
<td>Health Care</td>
<td>386,258,000</td>
<td>0.02</td>
</tr>
<tr>
<td>IPH</td>
<td>IPH Limited</td>
<td>Industrials</td>
<td>980,110,000</td>
<td>0.06</td>
</tr>
<tr>
<td>IPL</td>
<td>Incitec Pivot Limited</td>
<td>Materials</td>
<td>6,073,810,000</td>
<td>0.36</td>
</tr>
<tr>
<td>IRE</td>
<td>Iress Limited</td>
<td>Information Technology</td>
<td>2,017,390,000</td>
<td>0.12</td>
</tr>
<tr>
<td>ISD</td>
<td>Isentia Group Limited</td>
<td>Information Technology</td>
<td>574,000,000</td>
<td>0.03</td>
</tr>
<tr>
<td>ISU</td>
<td>Iselect Limited</td>
<td>Consumer Discretionary</td>
<td>439,875,000</td>
<td>0.03</td>
</tr>
<tr>
<td>IVC</td>
<td>Invocare Limited</td>
<td>Consumer Discretionary</td>
<td>1,526,120,000</td>
<td>0.09</td>
</tr>
<tr>
<td>JBH</td>
<td>JB Hi-fi Limited</td>
<td>Consumer Discretionary</td>
<td>3,206,810,000</td>
<td>0.19</td>
</tr>
<tr>
<td>JHC</td>
<td>Japara Healthcare Limited</td>
<td>Health Care</td>
<td>599,216,000</td>
<td>0.04</td>
</tr>
<tr>
<td>JHX</td>
<td>James Hardie Industries PLC Cdi 1:1</td>
<td>Materials</td>
<td>9,685,290,000</td>
<td>0.58</td>
</tr>
<tr>
<td>KAR</td>
<td>Karoon Gas Australia Limited</td>
<td>Energy</td>
<td>441,229,000</td>
<td>0.03</td>
</tr>
<tr>
<td>KMD</td>
<td>Kathmandu Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>375,769,000</td>
<td>0.02</td>
</tr>
<tr>
<td>LLC</td>
<td>Lendlease Group Stapled</td>
<td>Real Estate</td>
<td>8,523,310,000</td>
<td>0.51</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied Natural Gas Limited</td>
<td>Energy</td>
<td>345,619,000</td>
<td>0.02</td>
</tr>
<tr>
<td>LNK</td>
<td>Link Administration Holdings Limited</td>
<td>Information Technology</td>
<td>2,723,670,000</td>
<td>0.16</td>
</tr>
<tr>
<td>LYC</td>
<td>Lynas Corporation Limited</td>
<td>Materials</td>
<td>257,026,000</td>
<td>0.02</td>
</tr>
<tr>
<td>MFG</td>
<td>Magellan Financial Group Limited</td>
<td>Financials</td>
<td>4,090,260,000</td>
<td>0.24</td>
</tr>
<tr>
<td>MGC</td>
<td>MG Unit Trust Units</td>
<td>Consumer Staples</td>
<td>189,497,000</td>
<td>0.01</td>
</tr>
<tr>
<td>MGR</td>
<td>Mirvac Group Stapled</td>
<td>Real Estate</td>
<td>7,891,890,000</td>
<td>0.47</td>
</tr>
<tr>
<td>MIN</td>
<td>Mineral Resources Limited</td>
<td>Materials</td>
<td>2,266,880,000</td>
<td>0.14</td>
</tr>
<tr>
<td>MLD</td>
<td>Maca Limited</td>
<td>Materials</td>
<td>401,899,000</td>
<td>0.02</td>
</tr>
<tr>
<td>MLX</td>
<td>Metals X Limited</td>
<td>Materials</td>
<td>341,231,000</td>
<td>0.02</td>
</tr>
<tr>
<td>MMS</td>
<td>Mcmillan Shakespeare Limited</td>
<td>Industrials</td>
<td>904,435,000</td>
<td>0.05</td>
</tr>
<tr>
<td>MND</td>
<td>Monadelphous Group Limited</td>
<td>Industrials</td>
<td>1,053,870,000</td>
<td>0.06</td>
</tr>
<tr>
<td>MNS</td>
<td>Magnis Resources Limited</td>
<td>Materials</td>
<td>339,749,000</td>
<td>0.02</td>
</tr>
<tr>
<td>MOC</td>
<td>Mortgage Choice Limited</td>
<td>Financials</td>
<td>298,651,000</td>
<td>0.02</td>
</tr>
<tr>
<td>MPL</td>
<td>Medibank Private Limited</td>
<td>Financials</td>
<td>7,766,290,000</td>
<td>0.46</td>
</tr>
<tr>
<td>MQA</td>
<td>Macquarie Atlas Roads Group Stapled</td>
<td>Industrials</td>
<td>2,677,160,000</td>
<td>0.16</td>
</tr>
<tr>
<td>MQG</td>
<td>Macquarie Group Limited</td>
<td>Financials</td>
<td>29,651,400,000</td>
<td>1.78</td>
</tr>
<tr>
<td>MSB</td>
<td>Mesoblast Limited</td>
<td>Health Care</td>
<td>545,765,000</td>
<td>0.03</td>
</tr>
<tr>
<td>MTR</td>
<td>Mantra Group Limited</td>
<td>Consumer Discretionary</td>
<td>915,396,000</td>
<td>0.05</td>
</tr>
<tr>
<td>MTS</td>
<td>Metcash Limited</td>
<td>Consumer Staples</td>
<td>2,224,460,000</td>
<td>0.13</td>
</tr>
<tr>
<td>MVF</td>
<td>Monash Ivf Group Limited</td>
<td>Health Care</td>
<td>482,561,000</td>
<td>0.03</td>
</tr>
<tr>
<td>MYO</td>
<td>Myob Group Limited</td>
<td>Information Technology</td>
<td>2,193,740,000</td>
<td>0.13</td>
</tr>
<tr>
<td>MYR</td>
<td>Myer Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>1,133,360,000</td>
<td>0.07</td>
</tr>
<tr>
<td>MYX</td>
<td>Mayne Pharma Group Limited</td>
<td>Health Care</td>
<td>2,016,060,000</td>
<td>0.12</td>
</tr>
<tr>
<td>NAB</td>
<td>National Australia Bank Limited</td>
<td>Financials</td>
<td>81,896,800,000</td>
<td>4.9</td>
</tr>
<tr>
<td>NAN</td>
<td>Nanosonics Limited</td>
<td>Health Care</td>
<td>925,950,000</td>
<td>0.06</td>
</tr>
<tr>
<td>NCM</td>
<td>Newcrest Mining Limited</td>
<td>Materials</td>
<td>15,526,400,000</td>
<td>0.93</td>
</tr>
<tr>
<td>NEC</td>
<td>Nine Entertainment Co. Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>928,012,000</td>
<td>0.06</td>
</tr>
<tr>
<td>NHF</td>
<td>Nib Holdings Limited</td>
<td>Financials</td>
<td>2,085,270,000</td>
<td>0.12</td>
</tr>
<tr>
<td>NSR</td>
<td>National Storage Reit Stapled</td>
<td>Real Estate</td>
<td>752,272,000</td>
<td>0.05</td>
</tr>
<tr>
<td>NST</td>
<td>Northern Star Resources LTD</td>
<td>Materials</td>
<td>2,173,960,000</td>
<td>0.13</td>
</tr>
<tr>
<td>NTC</td>
<td>Netcomm Wireless Limited</td>
<td>Information Technology</td>
<td>314,609,000</td>
<td>0.02</td>
</tr>
<tr>
<td>NUF</td>
<td>Nufarm Limited</td>
<td>Materials</td>
<td>2,443,350,000</td>
<td>0.15</td>
</tr>
<tr>
<td>NVT</td>
<td>Navitas Limited</td>
<td>Consumer Discretionary</td>
<td>1,809,900,000</td>
<td>0.11</td>
</tr>
<tr>
<td>NWS</td>
<td>News Corporation. B Voting</td>
<td>Consumer Discretionary</td>
<td>713,820,000</td>
<td>0.04</td>
</tr>
<tr>
<td>NXT</td>
<td>Nextdc Limited</td>
<td>Information Technology</td>
<td>1,034,020,000</td>
<td>0.06</td>
</tr>
<tr>
<td>OFX</td>
<td>OFX Group Limited</td>
<td>Financials</td>
<td>403,200,000</td>
<td>0.02</td>
</tr>
<tr>
<td>OGC</td>
<td>Oceanagold Corporation Cdi 1:1</td>
<td>Materials</td>
<td>2,566,080,000</td>
<td>0.15</td>
</tr>
<tr>
<td>OML</td>
<td>Ooh!media Limited</td>
<td>Consumer Discretionary</td>
<td>750,111,000</td>
<td>0.04</td>
</tr>
<tr>
<td>ORA</td>
<td>Orora Limited</td>
<td>Materials</td>
<td>3,607,990,000</td>
<td>0.22</td>
</tr>
<tr>
<td>ORE</td>
<td>Orocobre Limited</td>
<td>Materials</td>
<td>952,752,000</td>
<td>0.06</td>
</tr>
<tr>
<td>ORG</td>
<td>Origin Energy Limited</td>
<td>Energy</td>
<td>11,564,700,000</td>
<td>0.69</td>
</tr>
<tr>
<td>ORI</td>
<td>Orica Limited</td>
<td>Materials</td>
<td>6,650,790,000</td>
<td>0.4</td>
</tr>
<tr>
<td>OSH</td>
<td>Oil Search Limited 10T</td>
<td>Energy</td>
<td>10,917,700,000</td>
<td>0.65</td>
</tr>
<tr>
<td>OZL</td>
<td>Oz Minerals Limited</td>
<td>Materials</td>
<td>2,394,380,000</td>
<td>0.14</td>
</tr>
<tr>
<td>PDN</td>
<td>Paladin Energy LTD</td>
<td>Energy</td>
<td>147,305,000</td>
<td>0.01</td>
</tr>
<tr>
<td>PGH</td>
<td>Pact Group Holdings LTD</td>
<td>Materials</td>
<td>2,019,830,000</td>
<td>0.12</td>
</tr>
<tr>
<td>PLS</td>
<td>Pilbara Minerals Limited</td>
<td>Materials</td>
<td>631,223,000</td>
<td>0.04</td>
</tr>
<tr>
<td>PMV</td>
<td>Premier Investments Limited</td>
<td>Consumer Discretionary</td>
<td>2,273,320,000</td>
<td>0.14</td>
</tr>
<tr>
<td>PPT</td>
<td>Perpetual Limited</td>
<td>Financials</td>
<td>2,270,970,000</td>
<td>0.14</td>
</tr>
<tr>
<td>PRG</td>
<td>Programmed Maintenance Services Limited</td>
<td>Industrials</td>
<td>495,320,000</td>
<td>0.03</td>
</tr>
<tr>
<td>PRU</td>
<td>Perseus Mining Limited</td>
<td>Materials</td>
<td>345,659,000</td>
<td>0.02</td>
</tr>
<tr>
<td>PRY</td>
<td>Primary Health Care Limited</td>
<td>Health Care</td>
<td>2,127,450,000</td>
<td>0.13</td>
</tr>
<tr>
<td>PTM</td>
<td>Platinum Asset Management Limited</td>
<td>Financials</td>
<td>3,097,660,000</td>
<td>0.19</td>
</tr>
<tr>
<td>QAN</td>
<td>Qantas Airways Limited</td>
<td>Industrials</td>
<td>6,154,980,000</td>
<td>0.37</td>
</tr>
<tr>
<td>QBE</td>
<td>QBE Insurance Group Limited</td>
<td>Financials</td>
<td>17,035,200,000</td>
<td>1.02</td>
</tr>
<tr>
<td>QUB</td>
<td>Qube Holdings Limited</td>
<td>Industrials</td>
<td>3,542,670,000</td>
<td>0.21</td>
</tr>
<tr>
<td>RCG</td>
<td>RCG Corporation Limited</td>
<td>Consumer Discretionary</td>
<td>803,817,000</td>
<td>0.05</td>
</tr>
<tr>
<td>RCR</td>
<td>RCR Tomlinson Limited</td>
<td>Industrials</td>
<td>384,899,000</td>
<td>0.02</td>
</tr>
<tr>
<td>REA</td>
<td>REA Group LTD</td>
<td>Consumer Discretionary</td>
<td>7,274,600,000</td>
<td>0.44</td>
</tr>
<tr>
<td>REG</td>
<td>Regis Healthcare Limited</td>
<td>Health Care</td>
<td>1,375,640,000</td>
<td>0.08</td>
</tr>
<tr>
<td>RFF</td>
<td>Rural Funds Group Stapled</td>
<td>Real Estate</td>
<td>361,802,000</td>
<td>0.02</td>
</tr>
<tr>
<td>RFG</td>
<td>Retail Food Group Limited</td>
<td>Consumer Discretionary</td>
<td>1,235,900,000</td>
<td>0.07</td>
</tr>
<tr>
<td>RHC</td>
<td>Ramsay Health Care Limited</td>
<td>Health Care</td>
<td>13,802,100,000</td>
<td>0.83</td>
</tr>
<tr>
<td>RIC</td>
<td>Ridley Corporation Limited</td>
<td>Consumer Staples</td>
<td>384,771,000</td>
<td>0.02</td>
</tr>
<tr>
<td>RIO</td>
<td>RIO Tinto Limited</td>
<td>Materials</td>
<td>25,409,100,000</td>
<td>1.52</td>
</tr>
<tr>
<td>RMD</td>
<td>Resmed Inc Cdi 10:1</td>
<td>Health Care</td>
<td>12,088,200,000</td>
<td>0.72</td>
</tr>
<tr>
<td>RRL</td>
<td>Regis Resources Limited</td>
<td>Materials</td>
<td>1,487,950,000</td>
<td>0.09</td>
</tr>
<tr>
<td>RSG</td>
<td>Resolute Mining Limited</td>
<td>Materials</td>
<td>958,078,000</td>
<td>0.06</td>
</tr>
<tr>
<td>RWC</td>
<td>Reliance Worldwide Corporation Limited</td>
<td>Industrials</td>
<td>1,680,000,000</td>
<td>0.1</td>
</tr>
<tr>
<td>S32</td>
<td>SOUTH32 Limited</td>
<td>Materials</td>
<td>14,640,300,000</td>
<td>0.88</td>
</tr>
<tr>
<td>SAR</td>
<td>Saracen Mineral Holdings Limited</td>
<td>Materials</td>
<td>799,048,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SBM</td>
<td>ST Barbara Limited</td>
<td>Materials</td>
<td>1,014,560,000</td>
<td>0.06</td>
</tr>
<tr>
<td>SCG</td>
<td>Scentre Group Stapled</td>
<td>Real Estate</td>
<td>24,704,700,000</td>
<td>1.48</td>
</tr>
<tr>
<td>SCP</td>
<td>Shopping Centres Australasia Property Group Stapled</td>
<td>Real Estate</td>
<td>1,622,440,000</td>
<td>0.1</td>
</tr>
<tr>
<td>SDA</td>
<td>Speedcast International Limited</td>
<td>Telecommunication Services</td>
<td>831,140,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SDF</td>
<td>Steadfast Group Limited</td>
<td>Financials</td>
<td>1,656,950,000</td>
<td>0.1</td>
</tr>
<tr>
<td>SEH</td>
<td>Sino Gas &amp; Energy Holdings Limited</td>
<td>Energy</td>
<td>238,553,000</td>
<td>0.01</td>
</tr>
<tr>
<td>SEK</td>
<td>Seek Limited</td>
<td>Industrials</td>
<td>5,175,350,000</td>
<td>0.31</td>
</tr>
<tr>
<td>SFR</td>
<td>Sandfire Resources NL</td>
<td>Materials</td>
<td>889,630,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SGF</td>
<td>SG Fleet Group Limited</td>
<td>Industrials</td>
<td>842,593,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SGM</td>
<td>Sims Metal Management Limited</td>
<td>Materials</td>
<td>2,533,180,000</td>
<td>0.15</td>
</tr>
<tr>
<td>SGP</td>
<td>Stockland Stapled</td>
<td>Real Estate</td>
<td>11,015,100,000</td>
<td>0.66</td>
</tr>
<tr>
<td>SGR</td>
<td>The Star Entertainment Group Limited</td>
<td>Consumer Discretionary</td>
<td>4,268,730,000</td>
<td>0.26</td>
</tr>
<tr>
<td>SHL</td>
<td>Sonic Healthcare Limited</td>
<td>Health Care</td>
<td>8,908,830,000</td>
<td>0.53</td>
</tr>
<tr>
<td>SHV</td>
<td>Select Harvests Limited</td>
<td>Consumer Staples</td>
<td>487,950,000</td>
<td>0.03</td>
</tr>
<tr>
<td>SIP</td>
<td>Sigma Pharmaceuticals Limited</td>
<td>Health Care</td>
<td>1,390,650,000</td>
<td>0.08</td>
</tr>
<tr>
<td>SIQ</td>
<td>Smartgroup Corporation LTD</td>
<td>Industrials</td>
<td>762,939,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SIV</td>
<td>Silver Chef Limited</td>
<td>Industrials</td>
<td>319,297,000</td>
<td>0.02</td>
</tr>
<tr>
<td>SKC</td>
<td>Skycity Entertainment Group Limited NZX</td>
<td>Consumer Discretionary</td>
<td>2,486,980,000</td>
<td>0.15</td>
</tr>
<tr>
<td>SKI</td>
<td>Spark Infrastructure Group Forus</td>
<td>Utilities</td>
<td>4,003,190,000</td>
<td>0.24</td>
</tr>
<tr>
<td>SKT</td>
<td>SKY Network Television Limited NZ</td>
<td>Consumer Discretionary</td>
<td>1,723,890,000</td>
<td>0.1</td>
</tr>
<tr>
<td>SLK</td>
<td>Sealink Travel Group Limited</td>
<td>Consumer Discretionary</td>
<td>464,297,000</td>
<td>0.03</td>
</tr>
<tr>
<td>SPK</td>
<td>Spark New Zealand Limited NZX</td>
<td>Telecommunication Services</td>
<td>6,029,170,000</td>
<td>0.36</td>
</tr>
<tr>
<td>SPL</td>
<td>Starpharma Holdings Limited</td>
<td>Health Care</td>
<td>267,189,000</td>
<td>0.02</td>
</tr>
<tr>
<td>SPO</td>
<td>Spotless Group Holdings Limited</td>
<td>Industrials</td>
<td>1,087,310,000</td>
<td>0.07</td>
</tr>
<tr>
<td>SRX</td>
<td>Sirtex Medical Limited</td>
<td>Health Care</td>
<td>817,559,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SSM</td>
<td>Service Stream Limited</td>
<td>Industrials</td>
<td>401,708,000</td>
<td>0.02</td>
</tr>
<tr>
<td>STO</td>
<td>Santos Limited</td>
<td>Energy</td>
<td>8,168,810,000</td>
<td>0.49</td>
</tr>
<tr>
<td>SUL</td>
<td>Super Retail Group Limited</td>
<td>Consumer Discretionary</td>
<td>2,041,430,000</td>
<td>0.12</td>
</tr>
<tr>
<td>SUN</td>
<td>Suncorp Group Limited</td>
<td>Financials</td>
<td>17,443,500,000</td>
<td>1.04</td>
</tr>
<tr>
<td>SVW</td>
<td>Seven Group Holdings Limited</td>
<td>Industrials</td>
<td>2,204,930,000</td>
<td>0.13</td>
</tr>
<tr>
<td>SWM</td>
<td>Seven West Media Limited</td>
<td>Consumer Discretionary</td>
<td>1,213,970,000</td>
<td>0.07</td>
</tr>
<tr>
<td>SXL</td>
<td>Southern Cross Media Group Limited</td>
<td>Consumer Discretionary</td>
<td>1,188,130,000</td>
<td>0.07</td>
</tr>
<tr>
<td>SXY</td>
<td>Senex Energy Limited</td>
<td>Energy</td>
<td>305,906,000</td>
<td>0.02</td>
</tr>
<tr>
<td>SYD</td>
<td>Sydney Airport Forus</td>
<td>Industrials</td>
<td>13,476,500,000</td>
<td>0.81</td>
</tr>
<tr>
<td>SYR</td>
<td>Syrah Resources Limited</td>
<td>Materials</td>
<td>804,460,000</td>
<td>0.05</td>
</tr>
<tr>
<td>TAH</td>
<td>Tabcorp Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>4,017,630,000</td>
<td>0.24</td>
</tr>
<tr>
<td>TCL</td>
<td>Transurban Group Stapled</td>
<td>Industrials</td>
<td>21,081,100,000</td>
<td>1.26</td>
</tr>
<tr>
<td>TEN</td>
<td>TEN Network Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>334,995,000</td>
<td>0.02</td>
</tr>
<tr>
<td>TFC</td>
<td>TFS Corporation Limited</td>
<td>Materials</td>
<td>647,732,000</td>
<td>0.04</td>
</tr>
<tr>
<td>TGA</td>
<td>Thorn Group Limited</td>
<td>Consumer Discretionary</td>
<td>300,588,000</td>
<td>0.02</td>
</tr>
<tr>
<td>TGR</td>
<td>Tassal Group Limited</td>
<td>Consumer Staples</td>
<td>623,669,000</td>
<td>0.04</td>
</tr>
<tr>
<td>TIX</td>
<td>360 Capital Industrial Fund Ord Unit</td>
<td>Real Estate</td>
<td>532,013,000</td>
<td>0.03</td>
</tr>
<tr>
<td>TLS</td>
<td>Telstra Corporation Limited</td>
<td>Telecommunication Services</td>
<td>60,911,800,000</td>
<td>3.65</td>
</tr>
<tr>
<td>TME</td>
<td>Trade Me Group Limited NZX</td>
<td>Consumer Discretionary</td>
<td>1,926,230,000</td>
<td>0.12</td>
</tr>
<tr>
<td>TNE</td>
<td>Technology One Limited</td>
<td>Information Technology</td>
<td>1,770,140,000</td>
<td>0.11</td>
</tr>
<tr>
<td>TOX</td>
<td>TOX Free Solutions Limited</td>
<td>Industrials</td>
<td>502,320,000</td>
<td>0.03</td>
</tr>
<tr>
<td>TPM</td>
<td>TPG Telecom Limited</td>
<td>Telecommunication Services</td>
<td>5,786,590,000</td>
<td>0.35</td>
</tr>
<tr>
<td>TRS</td>
<td>The Reject Shop Limited</td>
<td>Consumer Discretionary</td>
<td>244,729,000</td>
<td>0.01</td>
</tr>
<tr>
<td>TTS</td>
<td>Tatts Group Limited</td>
<td>Consumer Discretionary</td>
<td>6,578,970,000</td>
<td>0.39</td>
</tr>
<tr>
<td>TWE</td>
<td>Treasury Wine Estates Limited</td>
<td>Consumer Staples</td>
<td>7,883,280,000</td>
<td>0.47</td>
</tr>
<tr>
<td>VCX</td>
<td>Vicinity Centres Stapled</td>
<td>Real Estate</td>
<td>11,836,400,000</td>
<td>0.71</td>
</tr>
<tr>
<td>VLW</td>
<td>Villa World Limited</td>
<td>Real Estate</td>
<td>258,995,000</td>
<td>0.02</td>
</tr>
<tr>
<td>VOC</td>
<td>Vocus Communications Limited</td>
<td>Telecommunication Services</td>
<td>2,400,770,000</td>
<td>0.14</td>
</tr>
<tr>
<td>VRL</td>
<td>Village Roadshow Limited</td>
<td>Consumer Discretionary</td>
<td>737,762,000</td>
<td>0.04</td>
</tr>
<tr>
<td>VRT</td>
<td>Virtus Health Limited</td>
<td>Health Care</td>
<td>501,551,000</td>
<td>0.03</td>
</tr>
<tr>
<td>VTG</td>
<td>Vita Group Limited</td>
<td>Consumer Discretionary</td>
<td>490,858,000</td>
<td>0.03</td>
</tr>
<tr>
<td>VVR</td>
<td>Viva Energy Reit Stapled</td>
<td>Real Estate</td>
<td>1,656,360,000</td>
<td>0.1</td>
</tr>
<tr>
<td>WBA</td>
<td>Webster Limited</td>
<td>Consumer Staples</td>
<td>474,619,000</td>
<td>0.03</td>
</tr>
<tr>
<td>WBC</td>
<td>Westpac Banking Corporation</td>
<td>Financials</td>
<td>109,426,000,000</td>
<td>6.55</td>
</tr>
<tr>
<td>WEB</td>
<td>Webjet Limited</td>
<td>Consumer Discretionary</td>
<td>1,037,770,000</td>
<td>0.06</td>
</tr>
<tr>
<td>WES</td>
<td>Wesfarmers Limited</td>
<td>Consumer Staples</td>
<td>47,657,800,000</td>
<td>2.85</td>
</tr>
<tr>
<td>WFD</td>
<td>Westfield Corporation Stapled</td>
<td>Real Estate</td>
<td>19,492,500,000</td>
<td>1.17</td>
</tr>
<tr>
<td>WGX</td>
<td>Westgold Resources Limited</td>
<td>Materials</td>
<td>502,708,000</td>
<td>0.03</td>
</tr>
<tr>
<td>WHC</td>
<td>Whitehaven Coal Limited</td>
<td>Energy</td>
<td>2,677,980,000</td>
<td>0.16</td>
</tr>
<tr>
<td>WOR</td>
<td>Worleyparsons Limited</td>
<td>Energy</td>
<td>2,395,430,000</td>
<td>0.14</td>
</tr>
<tr>
<td>WOW</td>
<td>Woolworths Limited</td>
<td>Consumer Staples</td>
<td>31,044,700,000</td>
<td>1.86</td>
</tr>
<tr>
<td>WPL</td>
<td>Woodside Petroleum Limited</td>
<td>Energy</td>
<td>26,250,600,000</td>
<td>1.57</td>
</tr>
<tr>
<td>WPP</td>
<td>WPP Aunz LTD</td>
<td>Consumer Discretionary</td>
<td>1,031,100,000</td>
<td>0.06</td>
</tr>
<tr>
<td>WSA</td>
<td>Western Areas Limited</td>
<td>Materials</td>
<td>835,754,000</td>
<td>0.05</td>
</tr>
<tr>
<td>WTC</td>
<td>Wisetech Global Limited</td>
<td>Information Technology</td>
<td>1,642,050,000</td>
<td>0.1</td>
</tr>
</tbody>
</table>

In [5]:
table_header = table.find('thead')
print(table_header)


<thead>
<tr class="tableizer-firstrow">
<th>Code</th>
<th>Company</th>
<th>Sector</th>
<th>Market Cap</th>
<th>Weight(%)</th>
</tr>
</thead>

In [6]:
table_body = table.find('tbody')
print(table_body)


<tbody>
<tr>
<td>A2M</td>
<td>The A2 Milk Company Limited NZ</td>
<td>Consumer Staples</td>
<td>1,460,370,000</td>
<td>0.09</td>
</tr>
<tr>
<td>AAC</td>
<td>Australian Agricultural Company Limited</td>
<td>Consumer Staples</td>
<td>947,014,000</td>
<td>0.06</td>
</tr>
<tr>
<td>AAD</td>
<td>Ardent Leisure Group Stapled</td>
<td>Consumer Discretionary</td>
<td>1,097,680,000</td>
<td>0.07</td>
</tr>
<tr>
<td>ABC</td>
<td>Adelaide Brighton Limited</td>
<td>Materials</td>
<td>3,527,620,000</td>
<td>0.21</td>
</tr>
<tr>
<td>ABP</td>
<td>Abacus Property Group Stapled</td>
<td>Real Estate</td>
<td>1,728,420,000</td>
<td>0.1</td>
</tr>
<tr>
<td>ACX</td>
<td>Aconex Limited</td>
<td>Information Technology</td>
<td>1,003,640,000</td>
<td>0.06</td>
</tr>
<tr>
<td>ADH</td>
<td>Adairs Limited</td>
<td>Consumer Discretionary</td>
<td>265,400,000</td>
<td>0.02</td>
</tr>
<tr>
<td>AGI</td>
<td>Ainsworth Game Technology Limited</td>
<td>Consumer Discretionary</td>
<td>698,591,000</td>
<td>0.04</td>
</tr>
<tr>
<td>AGL</td>
<td>AGL Energy Limited</td>
<td>Utilities</td>
<td>14,851,400,000</td>
<td>0.89</td>
</tr>
<tr>
<td>AHG</td>
<td>Automotive Holdings Group Limited</td>
<td>Consumer Discretionary</td>
<td>1,309,910,000</td>
<td>0.08</td>
</tr>
<tr>
<td>AHY</td>
<td>Asaleo Care Limited</td>
<td>Consumer Staples</td>
<td>821,324,000</td>
<td>0.05</td>
</tr>
<tr>
<td>AIA</td>
<td>Auckland International Airport Limited NZX</td>
<td>Industrials</td>
<td>7,323,990,000</td>
<td>0.44</td>
</tr>
<tr>
<td>AJA</td>
<td>Astro Japan Property Group Forus</td>
<td>Real Estate</td>
<td>403,339,000</td>
<td>0.02</td>
</tr>
<tr>
<td>AJX</td>
<td>Alexium International Group Limited</td>
<td>Materials</td>
<td>184,243,000</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL</td>
<td>Aristocrat Leisure Limited</td>
<td>Consumer Discretionary</td>
<td>9,897,430,000</td>
<td>0.59</td>
</tr>
<tr>
<td>ALQ</td>
<td>Als Limited</td>
<td>Industrials</td>
<td>3,045,500,000</td>
<td>0.18</td>
</tr>
<tr>
<td>ALU</td>
<td>Altium Limited</td>
<td>Information Technology</td>
<td>1,053,450,000</td>
<td>0.06</td>
</tr>
<tr>
<td>AMA</td>
<td>AMA Group Limited</td>
<td>Consumer Discretionary</td>
<td>466,583,000</td>
<td>0.03</td>
</tr>
<tr>
<td>AMC</td>
<td>Amcor Limited</td>
<td>Materials</td>
<td>17,314,200,000</td>
<td>1.04</td>
</tr>
<tr>
<td>AMP</td>
<td>AMP Limited</td>
<td>Financials</td>
<td>14,907,000,000</td>
<td>0.89</td>
</tr>
<tr>
<td>ANN</td>
<td>Ansell Limited</td>
<td>Health Care</td>
<td>3,643,430,000</td>
<td>0.22</td>
</tr>
<tr>
<td>ANZ</td>
<td>Australia And New Zealand Banking Group Limited</td>
<td>Financials</td>
<td>89,314,200,000</td>
<td>5.35</td>
</tr>
<tr>
<td>AOG</td>
<td>Aveo Group Stapled</td>
<td>Real Estate</td>
<td>1,947,480,000</td>
<td>0.12</td>
</tr>
<tr>
<td>APA</td>
<td>APA Group Stapled</td>
<td>Utilities</td>
<td>9,549,610,000</td>
<td>0.57</td>
</tr>
<tr>
<td>API</td>
<td>Australian Pharmaceutical Industries Limited</td>
<td>Health Care</td>
<td>1,008,990,000</td>
<td>0.06</td>
</tr>
<tr>
<td>APN</td>
<td>APN News &amp; Media Limited</td>
<td>Consumer Discretionary</td>
<td>873,284,000</td>
<td>0.05</td>
</tr>
<tr>
<td>APO</td>
<td>Apn Outdoor Group Limited</td>
<td>Consumer Discretionary</td>
<td>984,692,000</td>
<td>0.06</td>
</tr>
<tr>
<td>AQG</td>
<td>Alacer Gold Corp Cdi 1:1</td>
<td>Materials</td>
<td>195,595,000</td>
<td>0.01</td>
</tr>
<tr>
<td>ARB</td>
<td>ARB Corporation Limited</td>
<td>Consumer Discretionary</td>
<td>1,397,600,000</td>
<td>0.08</td>
</tr>
<tr>
<td>ARF</td>
<td>Arena Reit Stapled</td>
<td>Real Estate</td>
<td>436,886,000</td>
<td>0.03</td>
</tr>
<tr>
<td>ASB</td>
<td>Austal Limited</td>
<td>Industrials</td>
<td>607,433,000</td>
<td>0.04</td>
</tr>
<tr>
<td>AST</td>
<td>Ausnet Services Limited</td>
<td>Utilities</td>
<td>5,692,980,000</td>
<td>0.34</td>
</tr>
<tr>
<td>ASX</td>
<td>ASX Limited</td>
<td>Financials</td>
<td>9,629,420,000</td>
<td>0.58</td>
</tr>
<tr>
<td>AVN</td>
<td>Aventus Retail Property Fund Unit</td>
<td>Real Estate</td>
<td>930,532,000</td>
<td>0.06</td>
</tr>
<tr>
<td>AWC</td>
<td>Alumina Limited</td>
<td>Materials</td>
<td>5,270,110,000</td>
<td>0.32</td>
</tr>
<tr>
<td>AWE</td>
<td>AWE Limited</td>
<td>Energy</td>
<td>327,457,000</td>
<td>0.02</td>
</tr>
<tr>
<td>AYS</td>
<td>Amaysim Australia Limited</td>
<td>Telecommunication Services</td>
<td>365,136,000</td>
<td>0.02</td>
</tr>
<tr>
<td>AZJ</td>
<td>Aurizon Holdings Limited</td>
<td>Industrials</td>
<td>10,361,300,000</td>
<td>0.62</td>
</tr>
<tr>
<td>BAL</td>
<td>Bellamy’s Australia Limited</td>
<td>Consumer Staples</td>
<td>645,866,000</td>
<td>0.04</td>
</tr>
<tr>
<td>BAP</td>
<td>Bapcor Limited</td>
<td>Consumer Discretionary</td>
<td>1,644,680,000</td>
<td>0.1</td>
</tr>
<tr>
<td>BBN</td>
<td>Baby Bunting Group Limited</td>
<td>Consumer Discretionary</td>
<td>305,501,000</td>
<td>0.02</td>
</tr>
<tr>
<td>BDR</td>
<td>Beadell Resources Limited</td>
<td>Materials</td>
<td>285,543,000</td>
<td>0.02</td>
</tr>
<tr>
<td>BEN</td>
<td>Bendigo And Adelaide Bank Limited</td>
<td>Financials</td>
<td>6,007,070,000</td>
<td>0.36</td>
</tr>
<tr>
<td>BGA</td>
<td>Bega Cheese Limited</td>
<td>Consumer Staples</td>
<td>647,036,000</td>
<td>0.04</td>
</tr>
<tr>
<td>BHP</td>
<td>BHP Billiton Limited</td>
<td>Materials</td>
<td>80,485,000,000</td>
<td>4.82</td>
</tr>
<tr>
<td>BKL</td>
<td>Blackmores Limited</td>
<td>Consumer Staples</td>
<td>1,780,460,000</td>
<td>0.11</td>
</tr>
<tr>
<td>BKW</td>
<td>Brickworks Limited</td>
<td>Materials</td>
<td>2,026,350,000</td>
<td>0.12</td>
</tr>
<tr>
<td>BLA</td>
<td>Blue SKY Alternative Investments Limited</td>
<td>Financials</td>
<td>471,915,000</td>
<td>0.03</td>
</tr>
<tr>
<td>BLD</td>
<td>Boral Limited</td>
<td>Materials</td>
<td>6,342,320,000</td>
<td>0.38</td>
</tr>
<tr>
<td>BOQ</td>
<td>Bank of Queensland Limited</td>
<td>Financials</td>
<td>4,597,540,000</td>
<td>0.28</td>
</tr>
<tr>
<td>BPT</td>
<td>Beach Energy Limited</td>
<td>Energy</td>
<td>1,585,330,000</td>
<td>0.09</td>
</tr>
<tr>
<td>BRG</td>
<td>Breville Group Limited</td>
<td>Consumer Discretionary</td>
<td>1,126,630,000</td>
<td>0.07</td>
</tr>
<tr>
<td>BSL</td>
<td>Bluescope Steel Limited</td>
<td>Materials</td>
<td>5,325,730,000</td>
<td>0.32</td>
</tr>
<tr>
<td>BTT</td>
<td>BT Investment Management Limited</td>
<td>Financials</td>
<td>3,303,480,000</td>
<td>0.2</td>
</tr>
<tr>
<td>BWP</td>
<td>BWP Trust Ord Units</td>
<td>Real Estate</td>
<td>1,920,730,000</td>
<td>0.11</td>
</tr>
<tr>
<td>BWX</td>
<td>BWX Limited</td>
<td>Consumer Staples</td>
<td>373,799,000</td>
<td>0.02</td>
</tr>
<tr>
<td>BXB</td>
<td>Brambles Limited</td>
<td>Industrials</td>
<td>19,696,700,000</td>
<td>1.18</td>
</tr>
<tr>
<td>CAB</td>
<td>Cabcharge Australia Limited</td>
<td>Industrials</td>
<td>467,271,000</td>
<td>0.03</td>
</tr>
<tr>
<td>CAR</td>
<td>Carsales.com Limited</td>
<td>Information Technology</td>
<td>2,740,040,000</td>
<td>0.16</td>
</tr>
<tr>
<td>CBA</td>
<td>Commonwealth Bank of Australia</td>
<td>Financials</td>
<td>142,007,000,000</td>
<td>8.5</td>
</tr>
<tr>
<td>CCL</td>
<td>Coca-cola Amatil Limited</td>
<td>Consumer Staples</td>
<td>7,727,530,000</td>
<td>0.46</td>
</tr>
<tr>
<td>CCP</td>
<td>Credit Corp Group Limited</td>
<td>Financials</td>
<td>849,522,000</td>
<td>0.05</td>
</tr>
<tr>
<td>CCV</td>
<td>Cash Converters International</td>
<td>Consumer Discretionary</td>
<td>165,171,000</td>
<td>0.01</td>
</tr>
<tr>
<td>CDD</td>
<td>Cardno Limited</td>
<td>Industrials</td>
<td>453,212,000</td>
<td>0.03</td>
</tr>
<tr>
<td>CGC</td>
<td>Costa Group Holdings Limited</td>
<td>Consumer Staples</td>
<td>1,097,640,000</td>
<td>0.07</td>
</tr>
<tr>
<td>CGF</td>
<td>Challenger Limited</td>
<td>Financials</td>
<td>6,425,600,000</td>
<td>0.38</td>
</tr>
<tr>
<td>CHC</td>
<td>Charter Hall Group Forus</td>
<td>Real Estate</td>
<td>1,956,280,000</td>
<td>0.12</td>
</tr>
<tr>
<td>CIM</td>
<td>Cimic Group Limited</td>
<td>Industrials</td>
<td>11,329,400,000</td>
<td>0.68</td>
</tr>
<tr>
<td>CKF</td>
<td>Collins Foods Limited</td>
<td>Consumer Discretionary</td>
<td>629,886,000</td>
<td>0.04</td>
</tr>
<tr>
<td>CL1</td>
<td>Class Limited</td>
<td>Information Technology</td>
<td>334,165,000</td>
<td>0.02</td>
</tr>
<tr>
<td>CMW</td>
<td>Cromwell Property Group Stapled</td>
<td>Real Estate</td>
<td>1,732,510,000</td>
<td>0.1</td>
</tr>
<tr>
<td>CNU</td>
<td>Chorus Limited NZX</td>
<td>Telecommunication Services</td>
<td>1,558,770,000</td>
<td>0.09</td>
</tr>
<tr>
<td>COH</td>
<td>Cochlear Limited</td>
<td>Health Care</td>
<td>7,037,640,000</td>
<td>0.42</td>
</tr>
<tr>
<td>CPU</td>
<td>Computershare Limited</td>
<td>Information Technology</td>
<td>6,807,220,000</td>
<td>0.41</td>
</tr>
<tr>
<td>CQR</td>
<td>Charter Hall Retail Reit Unit</td>
<td>Real Estate</td>
<td>1,718,180,000</td>
<td>0.1</td>
</tr>
<tr>
<td>CSL</td>
<td>CSL Limited</td>
<td>Health Care</td>
<td>45,783,800,000</td>
<td>2.74</td>
</tr>
<tr>
<td>CSR</td>
<td>CSR Limited</td>
<td>Materials</td>
<td>2,330,700,000</td>
<td>0.14</td>
</tr>
<tr>
<td>CSV</td>
<td>CSG Limited</td>
<td>Information Technology</td>
<td>233,404,000</td>
<td>0.01</td>
</tr>
<tr>
<td>CTD</td>
<td>Corporate Travel Management Limited</td>
<td>Consumer Discretionary</td>
<td>1,823,200,000</td>
<td>0.11</td>
</tr>
<tr>
<td>CTX</td>
<td>Caltex Australia Limited</td>
<td>Energy</td>
<td>7,944,290,000</td>
<td>0.48</td>
</tr>
<tr>
<td>CVO</td>
<td>Cover-more Group Limited</td>
<td>Financials</td>
<td>731,311,000</td>
<td>0.04</td>
</tr>
<tr>
<td>CWN</td>
<td>Crown Resorts Limited</td>
<td>Consumer Discretionary</td>
<td>8,434,800,000</td>
<td>0.51</td>
</tr>
<tr>
<td>CWP</td>
<td>Cedar Woods Properties Limited</td>
<td>Real Estate</td>
<td>398,403,000</td>
<td>0.02</td>
</tr>
<tr>
<td>CWY</td>
<td>Cleanaway Waste Management Limited</td>
<td>Industrials</td>
<td>1,956,840,000</td>
<td>0.12</td>
</tr>
<tr>
<td>CYB</td>
<td>CYBG PLC Cdi 1:1</td>
<td>Financials</td>
<td>3,596,910,000</td>
<td>0.22</td>
</tr>
<tr>
<td>DCN</td>
<td>Dacian Gold Limited</td>
<td>Materials</td>
<td>301,351,000</td>
<td>0.02</td>
</tr>
<tr>
<td>DLX</td>
<td>Duluxgroup Limited</td>
<td>Materials</td>
<td>2,428,920,000</td>
<td>0.15</td>
</tr>
<tr>
<td>DMP</td>
<td>Domino’s Pizza Enterprises Limited</td>
<td>Consumer Discretionary</td>
<td>5,773,160,000</td>
<td>0.35</td>
</tr>
<tr>
<td>DNA</td>
<td>Donaco International Limited</td>
<td>Consumer Discretionary</td>
<td>303,392,000</td>
<td>0.02</td>
</tr>
<tr>
<td>DOW</td>
<td>Downer Edi Limited</td>
<td>Industrials</td>
<td>2,586,940,000</td>
<td>0.15</td>
</tr>
<tr>
<td>DRM</td>
<td>Doray Minerals Limited</td>
<td>Materials</td>
<td>153,476,000</td>
<td>0.01</td>
</tr>
<tr>
<td>DUE</td>
<td>Duet Group Forus</td>
<td>Utilities</td>
<td>6,666,540,000</td>
<td>0.4</td>
</tr>
<tr>
<td>DXS</td>
<td>Dexus Property Group Stapled</td>
<td>Real Estate</td>
<td>9,311,660,000</td>
<td>0.56</td>
</tr>
<tr>
<td>ECX</td>
<td>Eclipx Group Limited</td>
<td>Financials</td>
<td>991,813,000</td>
<td>0.06</td>
</tr>
<tr>
<td>EHE</td>
<td>Estia Health Limited</td>
<td>Health Care</td>
<td>594,709,000</td>
<td>0.04</td>
</tr>
<tr>
<td>ELD</td>
<td>Elders Limited</td>
<td>Consumer Staples</td>
<td>452,022,000</td>
<td>0.03</td>
</tr>
<tr>
<td>EML</td>
<td>EML Payments Limited</td>
<td>Financials</td>
<td>448,920,000</td>
<td>0.03</td>
</tr>
<tr>
<td>EPW</td>
<td>Erm Power Limited</td>
<td>Utilities</td>
<td>323,986,000</td>
<td>0.02</td>
</tr>
<tr>
<td>EQT</td>
<td>EQT Holdings Limited</td>
<td>Financials</td>
<td>350,966,000</td>
<td>0.02</td>
</tr>
<tr>
<td>EVN</td>
<td>Evolution Mining Limited</td>
<td>Materials</td>
<td>3,561,030,000</td>
<td>0.21</td>
</tr>
<tr>
<td>EWC</td>
<td>Energy World Corporation LTD</td>
<td>Utilities</td>
<td>450,883,000</td>
<td>0.03</td>
</tr>
<tr>
<td>FAR</td>
<td>FAR Limited</td>
<td>Energy</td>
<td>334,615,000</td>
<td>0.02</td>
</tr>
<tr>
<td>FBU</td>
<td>Fletcher Building Limited NZX</td>
<td>Materials</td>
<td>7,168,870,000</td>
<td>0.43</td>
</tr>
<tr>
<td>FET</td>
<td>Folkestone Education Trust Unit</td>
<td>Real Estate</td>
<td>633,272,000</td>
<td>0.04</td>
</tr>
<tr>
<td>FLT</td>
<td>Flight Centre Travel Group Limited</td>
<td>Consumer Discretionary</td>
<td>3,160,500,000</td>
<td>0.19</td>
</tr>
<tr>
<td>FMG</td>
<td>Fortescue Metals Group LTD</td>
<td>Materials</td>
<td>18,340,300,000</td>
<td>1.1</td>
</tr>
<tr>
<td>FNP</td>
<td>Freedom Foods Group Limited</td>
<td>Consumer Staples</td>
<td>865,644,000</td>
<td>0.05</td>
</tr>
<tr>
<td>FPH</td>
<td>Fisher &amp; Paykel Healthcare Corporation Limited NZX</td>
<td>Health Care</td>
<td>4,647,370,000</td>
<td>0.28</td>
</tr>
<tr>
<td>FSF</td>
<td>Fonterra Shareholders’ Fund Unit NZX</td>
<td>Consumer Staples</td>
<td>697,194,000</td>
<td>0.04</td>
</tr>
<tr>
<td>FXJ</td>
<td>Fairfax Media Limited</td>
<td>Consumer Discretionary</td>
<td>2,046,530,000</td>
<td>0.12</td>
</tr>
<tr>
<td>FXL</td>
<td>Flexigroup Limited</td>
<td>Financials</td>
<td>841,515,000</td>
<td>0.05</td>
</tr>
<tr>
<td>GBT</td>
<td>GBST Holdings Limited</td>
<td>Information Technology</td>
<td>255,150,000</td>
<td>0.02</td>
</tr>
<tr>
<td>GDI</td>
<td>GDI Property Group Stapled</td>
<td>Real Estate</td>
<td>533,431,000</td>
<td>0.03</td>
</tr>
<tr>
<td>GEM</td>
<td>G8 Education Limited</td>
<td>Consumer Discretionary</td>
<td>1,373,220,000</td>
<td>0.08</td>
</tr>
<tr>
<td>GHC</td>
<td>Generation Healthcare Reit Units</td>
<td>Real Estate</td>
<td>421,122,000</td>
<td>0.03</td>
</tr>
<tr>
<td>GMA</td>
<td>Genworth Mortgage Insurance Australia Limited</td>
<td>Financials</td>
<td>1,665,620,000</td>
<td>0.1</td>
</tr>
<tr>
<td>GMG</td>
<td>Goodman Group Stapled</td>
<td>Real Estate</td>
<td>12,756,400,000</td>
<td>0.76</td>
</tr>
<tr>
<td>GNC</td>
<td>Graincorp Limited</td>
<td>Consumer Staples</td>
<td>2,187,860,000</td>
<td>0.13</td>
</tr>
<tr>
<td>GOR</td>
<td>Gold Road Resources Limited</td>
<td>Materials</td>
<td>500,853,000</td>
<td>0.03</td>
</tr>
<tr>
<td>GOZ</td>
<td>Growthpoint Properties Australia Stapled</td>
<td>Real Estate</td>
<td>2,103,870,000</td>
<td>0.13</td>
</tr>
<tr>
<td>GPT</td>
<td>GPT Group Stapled</td>
<td>Real Estate</td>
<td>9,043,720,000</td>
<td>0.54</td>
</tr>
<tr>
<td>GTY</td>
<td>Gateway Lifestyle Group Stapled</td>
<td>Real Estate</td>
<td>646,699,000</td>
<td>0.04</td>
</tr>
<tr>
<td>GUD</td>
<td>G.u.d. Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>897,693,000</td>
<td>0.05</td>
</tr>
<tr>
<td>GWA</td>
<td>GWA Group Limited</td>
<td>Industrials</td>
<td>781,285,000</td>
<td>0.05</td>
</tr>
<tr>
<td>GXL</td>
<td>Greencross Limited</td>
<td>Consumer Discretionary</td>
<td>796,804,000</td>
<td>0.05</td>
</tr>
<tr>
<td>GXY</td>
<td>Galaxy Resources Limited</td>
<td>Materials</td>
<td>962,087,000</td>
<td>0.06</td>
</tr>
<tr>
<td>HFA</td>
<td>HFA Holdings Limited</td>
<td>Financials</td>
<td>389,155,000</td>
<td>0.02</td>
</tr>
<tr>
<td>HFR</td>
<td>Highfield Resources Limited</td>
<td>Materials</td>
<td>427,495,000</td>
<td>0.03</td>
</tr>
<tr>
<td>HGG</td>
<td>Henderson Group PLC Cdi 1:1</td>
<td>Financials</td>
<td>2,875,710,000</td>
<td>0.17</td>
</tr>
<tr>
<td>HPI</td>
<td>Hotel Property Investments Stapled</td>
<td>Real Estate</td>
<td>414,939,000</td>
<td>0.02</td>
</tr>
<tr>
<td>HSN</td>
<td>Hansen Technologies Limited</td>
<td>Information Technology</td>
<td>712,165,000</td>
<td>0.04</td>
</tr>
<tr>
<td>HSO</td>
<td>Healthscope Limited</td>
<td>Health Care</td>
<td>3,973,360,000</td>
<td>0.24</td>
</tr>
<tr>
<td>HVN</td>
<td>Harvey Norman Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>5,718,530,000</td>
<td>0.34</td>
</tr>
<tr>
<td>IAG</td>
<td>Insurance Australia Group Limited</td>
<td>Financials</td>
<td>14,181,500,000</td>
<td>0.85</td>
</tr>
<tr>
<td>IDR</td>
<td>Industria Reit Stapled</td>
<td>Real Estate</td>
<td>342,539,000</td>
<td>0.02</td>
</tr>
<tr>
<td>IEL</td>
<td>Idp Education Limited</td>
<td>Consumer Discretionary</td>
<td>998,677,000</td>
<td>0.06</td>
</tr>
<tr>
<td>IFL</td>
<td>Ioof Holdings Limited</td>
<td>Financials</td>
<td>2,764,230,000</td>
<td>0.17</td>
</tr>
<tr>
<td>IFM</td>
<td>Infomedia LTD</td>
<td>Information Technology</td>
<td>226,901,000</td>
<td>0.01</td>
</tr>
<tr>
<td>IFN</td>
<td>Infigen Energy Stapled</td>
<td>Utilities</td>
<td>702,520,000</td>
<td>0.04</td>
</tr>
<tr>
<td>IGO</td>
<td>Independence Group NL</td>
<td>Materials</td>
<td>2,534,540,000</td>
<td>0.15</td>
</tr>
<tr>
<td>ILU</td>
<td>Iluka Resources Limited</td>
<td>Materials</td>
<td>3,043,950,000</td>
<td>0.18</td>
</tr>
<tr>
<td>IMF</td>
<td>IMF Bentham Limited</td>
<td>Financials</td>
<td>299,584,000</td>
<td>0.02</td>
</tr>
<tr>
<td>INA</td>
<td>Ingenia Communities Group Stapled</td>
<td>Real Estate</td>
<td>476,268,000</td>
<td>0.03</td>
</tr>
<tr>
<td>INM</td>
<td>Iron Mountain Incorporated Cdi 1:1</td>
<td>Real Estate</td>
<td>2,146,340,000</td>
<td>0.13</td>
</tr>
<tr>
<td>IOF</td>
<td>Investa Office Fund Stapled</td>
<td>Real Estate</td>
<td>2,898,300,000</td>
<td>0.17</td>
</tr>
<tr>
<td>IPD</td>
<td>Impedimed Limited</td>
<td>Health Care</td>
<td>386,258,000</td>
<td>0.02</td>
</tr>
<tr>
<td>IPH</td>
<td>IPH Limited</td>
<td>Industrials</td>
<td>980,110,000</td>
<td>0.06</td>
</tr>
<tr>
<td>IPL</td>
<td>Incitec Pivot Limited</td>
<td>Materials</td>
<td>6,073,810,000</td>
<td>0.36</td>
</tr>
<tr>
<td>IRE</td>
<td>Iress Limited</td>
<td>Information Technology</td>
<td>2,017,390,000</td>
<td>0.12</td>
</tr>
<tr>
<td>ISD</td>
<td>Isentia Group Limited</td>
<td>Information Technology</td>
<td>574,000,000</td>
<td>0.03</td>
</tr>
<tr>
<td>ISU</td>
<td>Iselect Limited</td>
<td>Consumer Discretionary</td>
<td>439,875,000</td>
<td>0.03</td>
</tr>
<tr>
<td>IVC</td>
<td>Invocare Limited</td>
<td>Consumer Discretionary</td>
<td>1,526,120,000</td>
<td>0.09</td>
</tr>
<tr>
<td>JBH</td>
<td>JB Hi-fi Limited</td>
<td>Consumer Discretionary</td>
<td>3,206,810,000</td>
<td>0.19</td>
</tr>
<tr>
<td>JHC</td>
<td>Japara Healthcare Limited</td>
<td>Health Care</td>
<td>599,216,000</td>
<td>0.04</td>
</tr>
<tr>
<td>JHX</td>
<td>James Hardie Industries PLC Cdi 1:1</td>
<td>Materials</td>
<td>9,685,290,000</td>
<td>0.58</td>
</tr>
<tr>
<td>KAR</td>
<td>Karoon Gas Australia Limited</td>
<td>Energy</td>
<td>441,229,000</td>
<td>0.03</td>
</tr>
<tr>
<td>KMD</td>
<td>Kathmandu Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>375,769,000</td>
<td>0.02</td>
</tr>
<tr>
<td>LLC</td>
<td>Lendlease Group Stapled</td>
<td>Real Estate</td>
<td>8,523,310,000</td>
<td>0.51</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied Natural Gas Limited</td>
<td>Energy</td>
<td>345,619,000</td>
<td>0.02</td>
</tr>
<tr>
<td>LNK</td>
<td>Link Administration Holdings Limited</td>
<td>Information Technology</td>
<td>2,723,670,000</td>
<td>0.16</td>
</tr>
<tr>
<td>LYC</td>
<td>Lynas Corporation Limited</td>
<td>Materials</td>
<td>257,026,000</td>
<td>0.02</td>
</tr>
<tr>
<td>MFG</td>
<td>Magellan Financial Group Limited</td>
<td>Financials</td>
<td>4,090,260,000</td>
<td>0.24</td>
</tr>
<tr>
<td>MGC</td>
<td>MG Unit Trust Units</td>
<td>Consumer Staples</td>
<td>189,497,000</td>
<td>0.01</td>
</tr>
<tr>
<td>MGR</td>
<td>Mirvac Group Stapled</td>
<td>Real Estate</td>
<td>7,891,890,000</td>
<td>0.47</td>
</tr>
<tr>
<td>MIN</td>
<td>Mineral Resources Limited</td>
<td>Materials</td>
<td>2,266,880,000</td>
<td>0.14</td>
</tr>
<tr>
<td>MLD</td>
<td>Maca Limited</td>
<td>Materials</td>
<td>401,899,000</td>
<td>0.02</td>
</tr>
<tr>
<td>MLX</td>
<td>Metals X Limited</td>
<td>Materials</td>
<td>341,231,000</td>
<td>0.02</td>
</tr>
<tr>
<td>MMS</td>
<td>Mcmillan Shakespeare Limited</td>
<td>Industrials</td>
<td>904,435,000</td>
<td>0.05</td>
</tr>
<tr>
<td>MND</td>
<td>Monadelphous Group Limited</td>
<td>Industrials</td>
<td>1,053,870,000</td>
<td>0.06</td>
</tr>
<tr>
<td>MNS</td>
<td>Magnis Resources Limited</td>
<td>Materials</td>
<td>339,749,000</td>
<td>0.02</td>
</tr>
<tr>
<td>MOC</td>
<td>Mortgage Choice Limited</td>
<td>Financials</td>
<td>298,651,000</td>
<td>0.02</td>
</tr>
<tr>
<td>MPL</td>
<td>Medibank Private Limited</td>
<td>Financials</td>
<td>7,766,290,000</td>
<td>0.46</td>
</tr>
<tr>
<td>MQA</td>
<td>Macquarie Atlas Roads Group Stapled</td>
<td>Industrials</td>
<td>2,677,160,000</td>
<td>0.16</td>
</tr>
<tr>
<td>MQG</td>
<td>Macquarie Group Limited</td>
<td>Financials</td>
<td>29,651,400,000</td>
<td>1.78</td>
</tr>
<tr>
<td>MSB</td>
<td>Mesoblast Limited</td>
<td>Health Care</td>
<td>545,765,000</td>
<td>0.03</td>
</tr>
<tr>
<td>MTR</td>
<td>Mantra Group Limited</td>
<td>Consumer Discretionary</td>
<td>915,396,000</td>
<td>0.05</td>
</tr>
<tr>
<td>MTS</td>
<td>Metcash Limited</td>
<td>Consumer Staples</td>
<td>2,224,460,000</td>
<td>0.13</td>
</tr>
<tr>
<td>MVF</td>
<td>Monash Ivf Group Limited</td>
<td>Health Care</td>
<td>482,561,000</td>
<td>0.03</td>
</tr>
<tr>
<td>MYO</td>
<td>Myob Group Limited</td>
<td>Information Technology</td>
<td>2,193,740,000</td>
<td>0.13</td>
</tr>
<tr>
<td>MYR</td>
<td>Myer Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>1,133,360,000</td>
<td>0.07</td>
</tr>
<tr>
<td>MYX</td>
<td>Mayne Pharma Group Limited</td>
<td>Health Care</td>
<td>2,016,060,000</td>
<td>0.12</td>
</tr>
<tr>
<td>NAB</td>
<td>National Australia Bank Limited</td>
<td>Financials</td>
<td>81,896,800,000</td>
<td>4.9</td>
</tr>
<tr>
<td>NAN</td>
<td>Nanosonics Limited</td>
<td>Health Care</td>
<td>925,950,000</td>
<td>0.06</td>
</tr>
<tr>
<td>NCM</td>
<td>Newcrest Mining Limited</td>
<td>Materials</td>
<td>15,526,400,000</td>
<td>0.93</td>
</tr>
<tr>
<td>NEC</td>
<td>Nine Entertainment Co. Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>928,012,000</td>
<td>0.06</td>
</tr>
<tr>
<td>NHF</td>
<td>Nib Holdings Limited</td>
<td>Financials</td>
<td>2,085,270,000</td>
<td>0.12</td>
</tr>
<tr>
<td>NSR</td>
<td>National Storage Reit Stapled</td>
<td>Real Estate</td>
<td>752,272,000</td>
<td>0.05</td>
</tr>
<tr>
<td>NST</td>
<td>Northern Star Resources LTD</td>
<td>Materials</td>
<td>2,173,960,000</td>
<td>0.13</td>
</tr>
<tr>
<td>NTC</td>
<td>Netcomm Wireless Limited</td>
<td>Information Technology</td>
<td>314,609,000</td>
<td>0.02</td>
</tr>
<tr>
<td>NUF</td>
<td>Nufarm Limited</td>
<td>Materials</td>
<td>2,443,350,000</td>
<td>0.15</td>
</tr>
<tr>
<td>NVT</td>
<td>Navitas Limited</td>
<td>Consumer Discretionary</td>
<td>1,809,900,000</td>
<td>0.11</td>
</tr>
<tr>
<td>NWS</td>
<td>News Corporation. B Voting</td>
<td>Consumer Discretionary</td>
<td>713,820,000</td>
<td>0.04</td>
</tr>
<tr>
<td>NXT</td>
<td>Nextdc Limited</td>
<td>Information Technology</td>
<td>1,034,020,000</td>
<td>0.06</td>
</tr>
<tr>
<td>OFX</td>
<td>OFX Group Limited</td>
<td>Financials</td>
<td>403,200,000</td>
<td>0.02</td>
</tr>
<tr>
<td>OGC</td>
<td>Oceanagold Corporation Cdi 1:1</td>
<td>Materials</td>
<td>2,566,080,000</td>
<td>0.15</td>
</tr>
<tr>
<td>OML</td>
<td>Ooh!media Limited</td>
<td>Consumer Discretionary</td>
<td>750,111,000</td>
<td>0.04</td>
</tr>
<tr>
<td>ORA</td>
<td>Orora Limited</td>
<td>Materials</td>
<td>3,607,990,000</td>
<td>0.22</td>
</tr>
<tr>
<td>ORE</td>
<td>Orocobre Limited</td>
<td>Materials</td>
<td>952,752,000</td>
<td>0.06</td>
</tr>
<tr>
<td>ORG</td>
<td>Origin Energy Limited</td>
<td>Energy</td>
<td>11,564,700,000</td>
<td>0.69</td>
</tr>
<tr>
<td>ORI</td>
<td>Orica Limited</td>
<td>Materials</td>
<td>6,650,790,000</td>
<td>0.4</td>
</tr>
<tr>
<td>OSH</td>
<td>Oil Search Limited 10T</td>
<td>Energy</td>
<td>10,917,700,000</td>
<td>0.65</td>
</tr>
<tr>
<td>OZL</td>
<td>Oz Minerals Limited</td>
<td>Materials</td>
<td>2,394,380,000</td>
<td>0.14</td>
</tr>
<tr>
<td>PDN</td>
<td>Paladin Energy LTD</td>
<td>Energy</td>
<td>147,305,000</td>
<td>0.01</td>
</tr>
<tr>
<td>PGH</td>
<td>Pact Group Holdings LTD</td>
<td>Materials</td>
<td>2,019,830,000</td>
<td>0.12</td>
</tr>
<tr>
<td>PLS</td>
<td>Pilbara Minerals Limited</td>
<td>Materials</td>
<td>631,223,000</td>
<td>0.04</td>
</tr>
<tr>
<td>PMV</td>
<td>Premier Investments Limited</td>
<td>Consumer Discretionary</td>
<td>2,273,320,000</td>
<td>0.14</td>
</tr>
<tr>
<td>PPT</td>
<td>Perpetual Limited</td>
<td>Financials</td>
<td>2,270,970,000</td>
<td>0.14</td>
</tr>
<tr>
<td>PRG</td>
<td>Programmed Maintenance Services Limited</td>
<td>Industrials</td>
<td>495,320,000</td>
<td>0.03</td>
</tr>
<tr>
<td>PRU</td>
<td>Perseus Mining Limited</td>
<td>Materials</td>
<td>345,659,000</td>
<td>0.02</td>
</tr>
<tr>
<td>PRY</td>
<td>Primary Health Care Limited</td>
<td>Health Care</td>
<td>2,127,450,000</td>
<td>0.13</td>
</tr>
<tr>
<td>PTM</td>
<td>Platinum Asset Management Limited</td>
<td>Financials</td>
<td>3,097,660,000</td>
<td>0.19</td>
</tr>
<tr>
<td>QAN</td>
<td>Qantas Airways Limited</td>
<td>Industrials</td>
<td>6,154,980,000</td>
<td>0.37</td>
</tr>
<tr>
<td>QBE</td>
<td>QBE Insurance Group Limited</td>
<td>Financials</td>
<td>17,035,200,000</td>
<td>1.02</td>
</tr>
<tr>
<td>QUB</td>
<td>Qube Holdings Limited</td>
<td>Industrials</td>
<td>3,542,670,000</td>
<td>0.21</td>
</tr>
<tr>
<td>RCG</td>
<td>RCG Corporation Limited</td>
<td>Consumer Discretionary</td>
<td>803,817,000</td>
<td>0.05</td>
</tr>
<tr>
<td>RCR</td>
<td>RCR Tomlinson Limited</td>
<td>Industrials</td>
<td>384,899,000</td>
<td>0.02</td>
</tr>
<tr>
<td>REA</td>
<td>REA Group LTD</td>
<td>Consumer Discretionary</td>
<td>7,274,600,000</td>
<td>0.44</td>
</tr>
<tr>
<td>REG</td>
<td>Regis Healthcare Limited</td>
<td>Health Care</td>
<td>1,375,640,000</td>
<td>0.08</td>
</tr>
<tr>
<td>RFF</td>
<td>Rural Funds Group Stapled</td>
<td>Real Estate</td>
<td>361,802,000</td>
<td>0.02</td>
</tr>
<tr>
<td>RFG</td>
<td>Retail Food Group Limited</td>
<td>Consumer Discretionary</td>
<td>1,235,900,000</td>
<td>0.07</td>
</tr>
<tr>
<td>RHC</td>
<td>Ramsay Health Care Limited</td>
<td>Health Care</td>
<td>13,802,100,000</td>
<td>0.83</td>
</tr>
<tr>
<td>RIC</td>
<td>Ridley Corporation Limited</td>
<td>Consumer Staples</td>
<td>384,771,000</td>
<td>0.02</td>
</tr>
<tr>
<td>RIO</td>
<td>RIO Tinto Limited</td>
<td>Materials</td>
<td>25,409,100,000</td>
<td>1.52</td>
</tr>
<tr>
<td>RMD</td>
<td>Resmed Inc Cdi 10:1</td>
<td>Health Care</td>
<td>12,088,200,000</td>
<td>0.72</td>
</tr>
<tr>
<td>RRL</td>
<td>Regis Resources Limited</td>
<td>Materials</td>
<td>1,487,950,000</td>
<td>0.09</td>
</tr>
<tr>
<td>RSG</td>
<td>Resolute Mining Limited</td>
<td>Materials</td>
<td>958,078,000</td>
<td>0.06</td>
</tr>
<tr>
<td>RWC</td>
<td>Reliance Worldwide Corporation Limited</td>
<td>Industrials</td>
<td>1,680,000,000</td>
<td>0.1</td>
</tr>
<tr>
<td>S32</td>
<td>SOUTH32 Limited</td>
<td>Materials</td>
<td>14,640,300,000</td>
<td>0.88</td>
</tr>
<tr>
<td>SAR</td>
<td>Saracen Mineral Holdings Limited</td>
<td>Materials</td>
<td>799,048,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SBM</td>
<td>ST Barbara Limited</td>
<td>Materials</td>
<td>1,014,560,000</td>
<td>0.06</td>
</tr>
<tr>
<td>SCG</td>
<td>Scentre Group Stapled</td>
<td>Real Estate</td>
<td>24,704,700,000</td>
<td>1.48</td>
</tr>
<tr>
<td>SCP</td>
<td>Shopping Centres Australasia Property Group Stapled</td>
<td>Real Estate</td>
<td>1,622,440,000</td>
<td>0.1</td>
</tr>
<tr>
<td>SDA</td>
<td>Speedcast International Limited</td>
<td>Telecommunication Services</td>
<td>831,140,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SDF</td>
<td>Steadfast Group Limited</td>
<td>Financials</td>
<td>1,656,950,000</td>
<td>0.1</td>
</tr>
<tr>
<td>SEH</td>
<td>Sino Gas &amp; Energy Holdings Limited</td>
<td>Energy</td>
<td>238,553,000</td>
<td>0.01</td>
</tr>
<tr>
<td>SEK</td>
<td>Seek Limited</td>
<td>Industrials</td>
<td>5,175,350,000</td>
<td>0.31</td>
</tr>
<tr>
<td>SFR</td>
<td>Sandfire Resources NL</td>
<td>Materials</td>
<td>889,630,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SGF</td>
<td>SG Fleet Group Limited</td>
<td>Industrials</td>
<td>842,593,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SGM</td>
<td>Sims Metal Management Limited</td>
<td>Materials</td>
<td>2,533,180,000</td>
<td>0.15</td>
</tr>
<tr>
<td>SGP</td>
<td>Stockland Stapled</td>
<td>Real Estate</td>
<td>11,015,100,000</td>
<td>0.66</td>
</tr>
<tr>
<td>SGR</td>
<td>The Star Entertainment Group Limited</td>
<td>Consumer Discretionary</td>
<td>4,268,730,000</td>
<td>0.26</td>
</tr>
<tr>
<td>SHL</td>
<td>Sonic Healthcare Limited</td>
<td>Health Care</td>
<td>8,908,830,000</td>
<td>0.53</td>
</tr>
<tr>
<td>SHV</td>
<td>Select Harvests Limited</td>
<td>Consumer Staples</td>
<td>487,950,000</td>
<td>0.03</td>
</tr>
<tr>
<td>SIP</td>
<td>Sigma Pharmaceuticals Limited</td>
<td>Health Care</td>
<td>1,390,650,000</td>
<td>0.08</td>
</tr>
<tr>
<td>SIQ</td>
<td>Smartgroup Corporation LTD</td>
<td>Industrials</td>
<td>762,939,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SIV</td>
<td>Silver Chef Limited</td>
<td>Industrials</td>
<td>319,297,000</td>
<td>0.02</td>
</tr>
<tr>
<td>SKC</td>
<td>Skycity Entertainment Group Limited NZX</td>
<td>Consumer Discretionary</td>
<td>2,486,980,000</td>
<td>0.15</td>
</tr>
<tr>
<td>SKI</td>
<td>Spark Infrastructure Group Forus</td>
<td>Utilities</td>
<td>4,003,190,000</td>
<td>0.24</td>
</tr>
<tr>
<td>SKT</td>
<td>SKY Network Television Limited NZ</td>
<td>Consumer Discretionary</td>
<td>1,723,890,000</td>
<td>0.1</td>
</tr>
<tr>
<td>SLK</td>
<td>Sealink Travel Group Limited</td>
<td>Consumer Discretionary</td>
<td>464,297,000</td>
<td>0.03</td>
</tr>
<tr>
<td>SPK</td>
<td>Spark New Zealand Limited NZX</td>
<td>Telecommunication Services</td>
<td>6,029,170,000</td>
<td>0.36</td>
</tr>
<tr>
<td>SPL</td>
<td>Starpharma Holdings Limited</td>
<td>Health Care</td>
<td>267,189,000</td>
<td>0.02</td>
</tr>
<tr>
<td>SPO</td>
<td>Spotless Group Holdings Limited</td>
<td>Industrials</td>
<td>1,087,310,000</td>
<td>0.07</td>
</tr>
<tr>
<td>SRX</td>
<td>Sirtex Medical Limited</td>
<td>Health Care</td>
<td>817,559,000</td>
<td>0.05</td>
</tr>
<tr>
<td>SSM</td>
<td>Service Stream Limited</td>
<td>Industrials</td>
<td>401,708,000</td>
<td>0.02</td>
</tr>
<tr>
<td>STO</td>
<td>Santos Limited</td>
<td>Energy</td>
<td>8,168,810,000</td>
<td>0.49</td>
</tr>
<tr>
<td>SUL</td>
<td>Super Retail Group Limited</td>
<td>Consumer Discretionary</td>
<td>2,041,430,000</td>
<td>0.12</td>
</tr>
<tr>
<td>SUN</td>
<td>Suncorp Group Limited</td>
<td>Financials</td>
<td>17,443,500,000</td>
<td>1.04</td>
</tr>
<tr>
<td>SVW</td>
<td>Seven Group Holdings Limited</td>
<td>Industrials</td>
<td>2,204,930,000</td>
<td>0.13</td>
</tr>
<tr>
<td>SWM</td>
<td>Seven West Media Limited</td>
<td>Consumer Discretionary</td>
<td>1,213,970,000</td>
<td>0.07</td>
</tr>
<tr>
<td>SXL</td>
<td>Southern Cross Media Group Limited</td>
<td>Consumer Discretionary</td>
<td>1,188,130,000</td>
<td>0.07</td>
</tr>
<tr>
<td>SXY</td>
<td>Senex Energy Limited</td>
<td>Energy</td>
<td>305,906,000</td>
<td>0.02</td>
</tr>
<tr>
<td>SYD</td>
<td>Sydney Airport Forus</td>
<td>Industrials</td>
<td>13,476,500,000</td>
<td>0.81</td>
</tr>
<tr>
<td>SYR</td>
<td>Syrah Resources Limited</td>
<td>Materials</td>
<td>804,460,000</td>
<td>0.05</td>
</tr>
<tr>
<td>TAH</td>
<td>Tabcorp Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>4,017,630,000</td>
<td>0.24</td>
</tr>
<tr>
<td>TCL</td>
<td>Transurban Group Stapled</td>
<td>Industrials</td>
<td>21,081,100,000</td>
<td>1.26</td>
</tr>
<tr>
<td>TEN</td>
<td>TEN Network Holdings Limited</td>
<td>Consumer Discretionary</td>
<td>334,995,000</td>
<td>0.02</td>
</tr>
<tr>
<td>TFC</td>
<td>TFS Corporation Limited</td>
<td>Materials</td>
<td>647,732,000</td>
<td>0.04</td>
</tr>
<tr>
<td>TGA</td>
<td>Thorn Group Limited</td>
<td>Consumer Discretionary</td>
<td>300,588,000</td>
<td>0.02</td>
</tr>
<tr>
<td>TGR</td>
<td>Tassal Group Limited</td>
<td>Consumer Staples</td>
<td>623,669,000</td>
<td>0.04</td>
</tr>
<tr>
<td>TIX</td>
<td>360 Capital Industrial Fund Ord Unit</td>
<td>Real Estate</td>
<td>532,013,000</td>
<td>0.03</td>
</tr>
<tr>
<td>TLS</td>
<td>Telstra Corporation Limited</td>
<td>Telecommunication Services</td>
<td>60,911,800,000</td>
<td>3.65</td>
</tr>
<tr>
<td>TME</td>
<td>Trade Me Group Limited NZX</td>
<td>Consumer Discretionary</td>
<td>1,926,230,000</td>
<td>0.12</td>
</tr>
<tr>
<td>TNE</td>
<td>Technology One Limited</td>
<td>Information Technology</td>
<td>1,770,140,000</td>
<td>0.11</td>
</tr>
<tr>
<td>TOX</td>
<td>TOX Free Solutions Limited</td>
<td>Industrials</td>
<td>502,320,000</td>
<td>0.03</td>
</tr>
<tr>
<td>TPM</td>
<td>TPG Telecom Limited</td>
<td>Telecommunication Services</td>
<td>5,786,590,000</td>
<td>0.35</td>
</tr>
<tr>
<td>TRS</td>
<td>The Reject Shop Limited</td>
<td>Consumer Discretionary</td>
<td>244,729,000</td>
<td>0.01</td>
</tr>
<tr>
<td>TTS</td>
<td>Tatts Group Limited</td>
<td>Consumer Discretionary</td>
<td>6,578,970,000</td>
<td>0.39</td>
</tr>
<tr>
<td>TWE</td>
<td>Treasury Wine Estates Limited</td>
<td>Consumer Staples</td>
<td>7,883,280,000</td>
<td>0.47</td>
</tr>
<tr>
<td>VCX</td>
<td>Vicinity Centres Stapled</td>
<td>Real Estate</td>
<td>11,836,400,000</td>
<td>0.71</td>
</tr>
<tr>
<td>VLW</td>
<td>Villa World Limited</td>
<td>Real Estate</td>
<td>258,995,000</td>
<td>0.02</td>
</tr>
<tr>
<td>VOC</td>
<td>Vocus Communications Limited</td>
<td>Telecommunication Services</td>
<td>2,400,770,000</td>
<td>0.14</td>
</tr>
<tr>
<td>VRL</td>
<td>Village Roadshow Limited</td>
<td>Consumer Discretionary</td>
<td>737,762,000</td>
<td>0.04</td>
</tr>
<tr>
<td>VRT</td>
<td>Virtus Health Limited</td>
<td>Health Care</td>
<td>501,551,000</td>
<td>0.03</td>
</tr>
<tr>
<td>VTG</td>
<td>Vita Group Limited</td>
<td>Consumer Discretionary</td>
<td>490,858,000</td>
<td>0.03</td>
</tr>
<tr>
<td>VVR</td>
<td>Viva Energy Reit Stapled</td>
<td>Real Estate</td>
<td>1,656,360,000</td>
<td>0.1</td>
</tr>
<tr>
<td>WBA</td>
<td>Webster Limited</td>
<td>Consumer Staples</td>
<td>474,619,000</td>
<td>0.03</td>
</tr>
<tr>
<td>WBC</td>
<td>Westpac Banking Corporation</td>
<td>Financials</td>
<td>109,426,000,000</td>
<td>6.55</td>
</tr>
<tr>
<td>WEB</td>
<td>Webjet Limited</td>
<td>Consumer Discretionary</td>
<td>1,037,770,000</td>
<td>0.06</td>
</tr>
<tr>
<td>WES</td>
<td>Wesfarmers Limited</td>
<td>Consumer Staples</td>
<td>47,657,800,000</td>
<td>2.85</td>
</tr>
<tr>
<td>WFD</td>
<td>Westfield Corporation Stapled</td>
<td>Real Estate</td>
<td>19,492,500,000</td>
<td>1.17</td>
</tr>
<tr>
<td>WGX</td>
<td>Westgold Resources Limited</td>
<td>Materials</td>
<td>502,708,000</td>
<td>0.03</td>
</tr>
<tr>
<td>WHC</td>
<td>Whitehaven Coal Limited</td>
<td>Energy</td>
<td>2,677,980,000</td>
<td>0.16</td>
</tr>
<tr>
<td>WOR</td>
<td>Worleyparsons Limited</td>
<td>Energy</td>
<td>2,395,430,000</td>
<td>0.14</td>
</tr>
<tr>
<td>WOW</td>
<td>Woolworths Limited</td>
<td>Consumer Staples</td>
<td>31,044,700,000</td>
<td>1.86</td>
</tr>
<tr>
<td>WPL</td>
<td>Woodside Petroleum Limited</td>
<td>Energy</td>
<td>26,250,600,000</td>
<td>1.57</td>
</tr>
<tr>
<td>WPP</td>
<td>WPP Aunz LTD</td>
<td>Consumer Discretionary</td>
<td>1,031,100,000</td>
<td>0.06</td>
</tr>
<tr>
<td>WSA</td>
<td>Western Areas Limited</td>
<td>Materials</td>
<td>835,754,000</td>
<td>0.05</td>
</tr>
<tr>
<td>WTC</td>
<td>Wisetech Global Limited</td>
<td>Information Technology</td>
<td>1,642,050,000</td>
<td>0.1</td>
</tr>
</tbody>

In [7]:
# we will use these to gather data from the table
# and then to build our dataframe with
columns = []
data = []

# gather columns headers
for header in table_header.find_all('th'):
    column = re.sub('\W+','', header.string.strip().lower().replace (" ", "_"))
    columns.append(column)

# gather rows    
for tr in table_body.find_all('tr'):
    row = dict()

    for col, td in zip(columns, tr.find_all('td')):
        row[col] = td.string.strip()

    data.append(row)

# create table in dataframe format
index = pd.DataFrame(data, columns=columns)
index = index.apply(lambda x: pd.to_numeric(x, errors='ignore'))
index['yahoo_ticker'] = index['code'] + '.AX'
index.head()


Out[7]:
code company sector market_cap weight yahoo_ticker
0 A2M The A2 Milk Company Limited NZ Consumer Staples 1,460,370,000 0.09 A2M.AX
1 AAC Australian Agricultural Company Limited Consumer Staples 947,014,000 0.06 AAC.AX
2 AAD Ardent Leisure Group Stapled Consumer Discretionary 1,097,680,000 0.07 AAD.AX
3 ABC Adelaide Brighton Limited Materials 3,527,620,000 0.21 ABC.AX
4 ABP Abacus Property Group Stapled Real Estate 1,728,420,000 0.10 ABP.AX

In [8]:
# top 5 constituents
index.sort_values(by='weight', ascending=False).head()


Out[8]:
code company sector market_cap weight yahoo_ticker
59 CBA Commonwealth Bank of Australia Financials 142,007,000,000 8.50 CBA.AX
287 WBC Westpac Banking Corporation Financials 109,426,000,000 6.55 WBC.AX
21 ANZ Australia And New Zealand Banking Group Limited Financials 89,314,200,000 5.35 ANZ.AX
181 NAB National Australia Bank Limited Financials 81,896,800,000 4.90 NAB.AX
44 BHP BHP Billiton Limited Materials 80,485,000,000 4.82 BHP.AX

In [9]:
# create distinct list of sectors
sectors = index['sector'].unique()
print(sectors)


['Consumer Staples' 'Consumer Discretionary' 'Materials' 'Real Estate'
 'Information Technology' 'Utilities' 'Industrials' 'Financials'
 'Health Care' 'Energy' 'Telecommunication Services']

In [10]:
sector_weights = index.groupby(by='sector')['weight'].sum().sort_values(ascending=False)
ax = sector_weights.plot(kind='bar')
print(sector_weights)


sector
Financials                    34.95
Materials                     16.31
Real Estate                    8.60
Industrials                    7.33
Health Care                    6.77
Consumer Staples               6.63
Consumer Discretionary         6.33
Telecommunication Services     4.66
Energy                         4.40
Utilities                      2.53
Information Technology         1.52
Name: weight, dtype: float64

In [11]:
ax = sns.boxplot(data=index, x='sector', y='weight', linewidth=0.5, order=sector_weights.keys())
ax = plt.xticks(rotation=90)



In [12]:
sector_counts = index.groupby(by='sector')['weight'].count().sort_values(ascending=False)
ax = sector_counts.plot(kind='bar')
print(sector_counts)


sector
Consumer Discretionary        56
Materials                     52
Real Estate                   35
Financials                    35
Industrials                   30
Health Care                   22
Consumer Staples              22
Information Technology        17
Energy                        15
Utilities                      8
Telecommunication Services     7
Name: weight, dtype: int64

In [13]:
stocks = index['yahoo_ticker'].values.tolist()
print(stocks)


['A2M.AX', 'AAC.AX', 'AAD.AX', 'ABC.AX', 'ABP.AX', 'ACX.AX', 'ADH.AX', 'AGI.AX', 'AGL.AX', 'AHG.AX', 'AHY.AX', 'AIA.AX', 'AJA.AX', 'AJX.AX', 'ALL.AX', 'ALQ.AX', 'ALU.AX', 'AMA.AX', 'AMC.AX', 'AMP.AX', 'ANN.AX', 'ANZ.AX', 'AOG.AX', 'APA.AX', 'API.AX', 'APN.AX', 'APO.AX', 'AQG.AX', 'ARB.AX', 'ARF.AX', 'ASB.AX', 'AST.AX', 'ASX.AX', 'AVN.AX', 'AWC.AX', 'AWE.AX', 'AYS.AX', 'AZJ.AX', 'BAL.AX', 'BAP.AX', 'BBN.AX', 'BDR.AX', 'BEN.AX', 'BGA.AX', 'BHP.AX', 'BKL.AX', 'BKW.AX', 'BLA.AX', 'BLD.AX', 'BOQ.AX', 'BPT.AX', 'BRG.AX', 'BSL.AX', 'BTT.AX', 'BWP.AX', 'BWX.AX', 'BXB.AX', 'CAB.AX', 'CAR.AX', 'CBA.AX', 'CCL.AX', 'CCP.AX', 'CCV.AX', 'CDD.AX', 'CGC.AX', 'CGF.AX', 'CHC.AX', 'CIM.AX', 'CKF.AX', 'CL1.AX', 'CMW.AX', 'CNU.AX', 'COH.AX', 'CPU.AX', 'CQR.AX', 'CSL.AX', 'CSR.AX', 'CSV.AX', 'CTD.AX', 'CTX.AX', 'CVO.AX', 'CWN.AX', 'CWP.AX', 'CWY.AX', 'CYB.AX', 'DCN.AX', 'DLX.AX', 'DMP.AX', 'DNA.AX', 'DOW.AX', 'DRM.AX', 'DUE.AX', 'DXS.AX', 'ECX.AX', 'EHE.AX', 'ELD.AX', 'EML.AX', 'EPW.AX', 'EQT.AX', 'EVN.AX', 'EWC.AX', 'FAR.AX', 'FBU.AX', 'FET.AX', 'FLT.AX', 'FMG.AX', 'FNP.AX', 'FPH.AX', 'FSF.AX', 'FXJ.AX', 'FXL.AX', 'GBT.AX', 'GDI.AX', 'GEM.AX', 'GHC.AX', 'GMA.AX', 'GMG.AX', 'GNC.AX', 'GOR.AX', 'GOZ.AX', 'GPT.AX', 'GTY.AX', 'GUD.AX', 'GWA.AX', 'GXL.AX', 'GXY.AX', 'HFA.AX', 'HFR.AX', 'HGG.AX', 'HPI.AX', 'HSN.AX', 'HSO.AX', 'HVN.AX', 'IAG.AX', 'IDR.AX', 'IEL.AX', 'IFL.AX', 'IFM.AX', 'IFN.AX', 'IGO.AX', 'ILU.AX', 'IMF.AX', 'INA.AX', 'INM.AX', 'IOF.AX', 'IPD.AX', 'IPH.AX', 'IPL.AX', 'IRE.AX', 'ISD.AX', 'ISU.AX', 'IVC.AX', 'JBH.AX', 'JHC.AX', 'JHX.AX', 'KAR.AX', 'KMD.AX', 'LLC.AX', 'LNG.AX', 'LNK.AX', 'LYC.AX', 'MFG.AX', 'MGC.AX', 'MGR.AX', 'MIN.AX', 'MLD.AX', 'MLX.AX', 'MMS.AX', 'MND.AX', 'MNS.AX', 'MOC.AX', 'MPL.AX', 'MQA.AX', 'MQG.AX', 'MSB.AX', 'MTR.AX', 'MTS.AX', 'MVF.AX', 'MYO.AX', 'MYR.AX', 'MYX.AX', 'NAB.AX', 'NAN.AX', 'NCM.AX', 'NEC.AX', 'NHF.AX', 'NSR.AX', 'NST.AX', 'NTC.AX', 'NUF.AX', 'NVT.AX', 'NWS.AX', 'NXT.AX', 'OFX.AX', 'OGC.AX', 'OML.AX', 'ORA.AX', 'ORE.AX', 'ORG.AX', 'ORI.AX', 'OSH.AX', 'OZL.AX', 'PDN.AX', 'PGH.AX', 'PLS.AX', 'PMV.AX', 'PPT.AX', 'PRG.AX', 'PRU.AX', 'PRY.AX', 'PTM.AX', 'QAN.AX', 'QBE.AX', 'QUB.AX', 'RCG.AX', 'RCR.AX', 'REA.AX', 'REG.AX', 'RFF.AX', 'RFG.AX', 'RHC.AX', 'RIC.AX', 'RIO.AX', 'RMD.AX', 'RRL.AX', 'RSG.AX', 'RWC.AX', 'S32.AX', 'SAR.AX', 'SBM.AX', 'SCG.AX', 'SCP.AX', 'SDA.AX', 'SDF.AX', 'SEH.AX', 'SEK.AX', 'SFR.AX', 'SGF.AX', 'SGM.AX', 'SGP.AX', 'SGR.AX', 'SHL.AX', 'SHV.AX', 'SIP.AX', 'SIQ.AX', 'SIV.AX', 'SKC.AX', 'SKI.AX', 'SKT.AX', 'SLK.AX', 'SPK.AX', 'SPL.AX', 'SPO.AX', 'SRX.AX', 'SSM.AX', 'STO.AX', 'SUL.AX', 'SUN.AX', 'SVW.AX', 'SWM.AX', 'SXL.AX', 'SXY.AX', 'SYD.AX', 'SYR.AX', 'TAH.AX', 'TCL.AX', 'TEN.AX', 'TFC.AX', 'TGA.AX', 'TGR.AX', 'TIX.AX', 'TLS.AX', 'TME.AX', 'TNE.AX', 'TOX.AX', 'TPM.AX', 'TRS.AX', 'TTS.AX', 'TWE.AX', 'VCX.AX', 'VLW.AX', 'VOC.AX', 'VRL.AX', 'VRT.AX', 'VTG.AX', 'VVR.AX', 'WBA.AX', 'WBC.AX', 'WEB.AX', 'WES.AX', 'WFD.AX', 'WGX.AX', 'WHC.AX', 'WOR.AX', 'WOW.AX', 'WPL.AX', 'WPP.AX', 'WSA.AX', 'WTC.AX']

In [14]:
%%time
from pandas_datareader import data
from datetime import datetime, timedelta

# approx 10 years worth of data
n_days = 10 * 365

start = str(datetime.now() - timedelta(days=n_days))[:10]
end = str(datetime.now())[:10]   

panel = data.DataReader(stocks, 'yahoo', start, end)


/home/adrian/miniconda3/envs/sandpit/lib/python3.5/site-packages/pandas_datareader/base.py:192: SymbolWarning: Failed to read symbol: 'WGX.AX', replacing with NaN.
  warnings.warn(msg.format(sym), SymbolWarning)
CPU times: user 3.35 s, sys: 304 ms, total: 3.65 s
Wall time: 2min 22s

In [15]:
help(panel)


Help on Panel in module pandas.core.panel object:

class Panel(pandas.core.generic.NDFrame)
 |  Represents wide format panel data, stored as 3-dimensional array
 |  
 |  Parameters
 |  ----------
 |  data : ndarray (items x major x minor), or dict of DataFrames
 |  items : Index or array-like
 |      axis=0
 |  major_axis : Index or array-like
 |      axis=1
 |  minor_axis : Index or array-like
 |      axis=2
 |  dtype : dtype, default None
 |      Data type to force, otherwise infer
 |  copy : boolean, default False
 |      Copy data from inputs. Only affects DataFrame / 2d ndarray input
 |  
 |  Method resolution order:
 |      Panel
 |      pandas.core.generic.NDFrame
 |      pandas.core.base.PandasObject
 |      pandas.core.base.StringMixin
 |      builtins.object
 |  
 |  Methods defined here:
 |  
 |  __add__(self, other)
 |      # work only for scalars
 |  
 |  __and__(self, other)
 |      # work only for scalars
 |  
 |  __div__ = __truediv__(self, other)
 |  
 |  __eq__(self, other, axis=None)
 |      Wrapper for comparison method __eq__
 |  
 |  __floordiv__(self, other)
 |      # work only for scalars
 |  
 |  __ge__(self, other, axis=None)
 |      Wrapper for comparison method __ge__
 |  
 |  __getitem__(self, key)
 |  
 |  __gt__(self, other, axis=None)
 |      Wrapper for comparison method __gt__
 |  
 |  __iadd__ = f(self, other)
 |  
 |  __imul__ = f(self, other)
 |  
 |  __init__(self, data=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None)
 |      Initialize self.  See help(type(self)) for accurate signature.
 |  
 |  __ipow__ = f(self, other)
 |  
 |  __isub__ = f(self, other)
 |  
 |  __itruediv__ = f(self, other)
 |  
 |  __le__(self, other, axis=None)
 |      Wrapper for comparison method __le__
 |  
 |  __lt__(self, other, axis=None)
 |      Wrapper for comparison method __lt__
 |  
 |  __mod__(self, other)
 |      # work only for scalars
 |  
 |  __mul__(self, other)
 |      # work only for scalars
 |  
 |  __ne__(self, other, axis=None)
 |      Wrapper for comparison method __ne__
 |  
 |  __or__(self, other)
 |      # work only for scalars
 |  
 |  __pow__(self, other)
 |      # work only for scalars
 |  
 |  __radd__(self, other)
 |      # work only for scalars
 |  
 |  __rand__(self, other)
 |      # work only for scalars
 |  
 |  __rdiv__ = __rtruediv__(self, other)
 |  
 |  __rfloordiv__(self, other)
 |      # work only for scalars
 |  
 |  __rmod__(self, other)
 |      # work only for scalars
 |  
 |  __rmul__(self, other)
 |      # work only for scalars
 |  
 |  __ror__(self, other)
 |      # work only for scalars
 |  
 |  __rpow__(self, other)
 |      # work only for scalars
 |  
 |  __rsub__(self, other)
 |      # work only for scalars
 |  
 |  __rtruediv__(self, other)
 |      # work only for scalars
 |  
 |  __rxor__(self, other)
 |      # work only for scalars
 |  
 |  __setitem__(self, key, value)
 |  
 |  __sub__(self, other)
 |      # work only for scalars
 |  
 |  __truediv__(self, other)
 |      # work only for scalars
 |  
 |  __unicode__(self)
 |      Return a string representation for a particular Panel
 |      
 |      Invoked by unicode(df) in py2 only.
 |      Yields a Unicode String in both py2/py3.
 |  
 |  __xor__(self, other)
 |      # work only for scalars
 |  
 |  add(self, other, axis=0)
 |      Addition of series and other, element-wise (binary operator `add`).
 |      Equivalent to ``panel + other``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.radd
 |  
 |  align(self, other, **kwargs)
 |      Align two object on their axes with the
 |      specified join method for each axis Index
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Series
 |      join : {'outer', 'inner', 'left', 'right'}, default 'outer'
 |      axis : allowed axis of the other object, default None
 |          Align on index (0), columns (1), or both (None)
 |      level : int or level name, default None
 |          Broadcast across a level, matching Index values on the
 |          passed MultiIndex level
 |      copy : boolean, default True
 |          Always returns new objects. If copy=False and no reindexing is
 |          required then original objects are returned.
 |      fill_value : scalar, default np.NaN
 |          Value to use for missing values. Defaults to NaN, but can be any
 |          "compatible" value
 |      method : str, default None
 |      limit : int, default None
 |      fill_axis : int or labels for object, default 0
 |          Filling axis, method and limit
 |      broadcast_axis : int or labels for object, default None
 |          Broadcast values along this axis, if aligning two objects of
 |          different dimensions
 |      
 |          .. versionadded:: 0.17.0
 |      
 |      Returns
 |      -------
 |      (left, right) : (NDFrame, type of other)
 |          Aligned objects
 |  
 |  all(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs)
 |      Return whether all elements are True over requested axis
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      bool_only : boolean, default None
 |          Include only boolean columns. If None, will attempt to use everything,
 |          then use only boolean data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      all : DataFrame or Panel (if level specified)
 |  
 |  any(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs)
 |      Return whether any element is True over requested axis
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      bool_only : boolean, default None
 |          Include only boolean columns. If None, will attempt to use everything,
 |          then use only boolean data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      any : DataFrame or Panel (if level specified)
 |  
 |  apply(self, func, axis='major', **kwargs)
 |      Applies function along axis (or axes) of the Panel
 |      
 |      Parameters
 |      ----------
 |      func : function
 |          Function to apply to each combination of 'other' axes
 |          e.g. if axis = 'items', the combination of major_axis/minor_axis
 |          will each be passed as a Series; if axis = ('items', 'major'),
 |          DataFrames of items & major axis will be passed
 |      axis : {'items', 'minor', 'major'}, or {0, 1, 2}, or a tuple with two
 |          axes
 |      Additional keyword arguments will be passed as keywords to the function
 |      
 |      Examples
 |      --------
 |      
 |      Returns a Panel with the square root of each element
 |      
 |      >>> p = pd.Panel(np.random.rand(4,3,2))
 |      >>> p.apply(np.sqrt)
 |      
 |      Equivalent to p.sum(1), returning a DataFrame
 |      
 |      >>> p.apply(lambda x: x.sum(), axis=1)
 |      
 |      Equivalent to previous:
 |      
 |      >>> p.apply(lambda x: x.sum(), axis='minor')
 |      
 |      Return the shapes of each DataFrame over axis 2 (i.e the shapes of
 |      items x major), as a Series
 |      
 |      >>> p.apply(lambda x: x.shape, axis=(0,1))
 |      
 |      Returns
 |      -------
 |      result : Panel, DataFrame, or Series
 |  
 |  as_matrix(self)
 |      Convert the frame to its Numpy-array representation.
 |      
 |      Parameters
 |      ----------
 |      columns: list, optional, default:None
 |          If None, return all columns, otherwise, returns specified columns.
 |      
 |      Returns
 |      -------
 |      values : ndarray
 |          If the caller is heterogeneous and contains booleans or objects,
 |          the result will be of dtype=object. See Notes.
 |      
 |      
 |      Notes
 |      -----
 |      Return is NOT a Numpy-matrix, rather, a Numpy-array.
 |      
 |      The dtype will be a lower-common-denominator dtype (implicit
 |      upcasting); that is to say if the dtypes (even of numeric types)
 |      are mixed, the one that accommodates all will be chosen. Use this
 |      with care if you are not dealing with the blocks.
 |      
 |      e.g. If the dtypes are float16 and float32, dtype will be upcast to
 |      float32.  If dtypes are int32 and uint8, dtype will be upcase to
 |      int32. By numpy.find_common_type convention, mixing int64 and uint64
 |      will result in a flot64 dtype.
 |      
 |      This method is provided for backwards compatibility. Generally,
 |      it is recommended to use '.values'.
 |      
 |      See Also
 |      --------
 |      pandas.DataFrame.values
 |  
 |  compound(self, axis=None, skipna=None, level=None)
 |      Return the compound percentage of the values for the requested axis
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      compounded : DataFrame or Panel (if level specified)
 |  
 |  conform(self, frame, axis='items')
 |      Conform input DataFrame to align with chosen axis pair.
 |      
 |      Parameters
 |      ----------
 |      frame : DataFrame
 |      axis : {'items', 'major', 'minor'}
 |      
 |          Axis the input corresponds to. E.g., if axis='major', then
 |          the frame's columns would be items, and the index would be
 |          values of the minor axis
 |      
 |      Returns
 |      -------
 |      DataFrame
 |  
 |  count(self, axis='major')
 |      Return number of observations over requested axis.
 |      
 |      Parameters
 |      ----------
 |      axis : {'items', 'major', 'minor'} or {0, 1, 2}
 |      
 |      Returns
 |      -------
 |      count : DataFrame
 |  
 |  cummax(self, axis=None, skipna=True, *args, **kwargs)
 |      Return cumulative max over requested axis.
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      
 |      Returns
 |      -------
 |      cummax : DataFrame
 |  
 |  cummin(self, axis=None, skipna=True, *args, **kwargs)
 |      Return cumulative minimum over requested axis.
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      
 |      Returns
 |      -------
 |      cummin : DataFrame
 |  
 |  cumprod(self, axis=None, skipna=True, *args, **kwargs)
 |      Return cumulative product over requested axis.
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      
 |      Returns
 |      -------
 |      cumprod : DataFrame
 |  
 |  cumsum(self, axis=None, skipna=True, *args, **kwargs)
 |      Return cumulative sum over requested axis.
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      
 |      Returns
 |      -------
 |      cumsum : DataFrame
 |  
 |  div = truediv(self, other, axis=0)
 |  
 |  divide = truediv(self, other, axis=0)
 |  
 |  dropna(self, axis=0, how='any', inplace=False)
 |      Drop 2D from panel, holding passed axis constant
 |      
 |      Parameters
 |      ----------
 |      axis : int, default 0
 |          Axis to hold constant. E.g. axis=1 will drop major_axis entries
 |          having a certain amount of NA data
 |      how : {'all', 'any'}, default 'any'
 |          'any': one or more values are NA in the DataFrame along the
 |          axis. For 'all' they all must be.
 |      inplace : bool, default False
 |          If True, do operation inplace and return None.
 |      
 |      Returns
 |      -------
 |      dropped : Panel
 |  
 |  eq(self, other, axis=None)
 |      Wrapper for comparison method eq
 |  
 |  fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
 |      Fill NA/NaN values using the specified method
 |      
 |      Parameters
 |      ----------
 |      value : scalar, dict, Series, or DataFrame
 |          Value to use to fill holes (e.g. 0), alternately a
 |          dict/Series/DataFrame of values specifying which value to use for
 |          each index (for a Series) or column (for a DataFrame). (values not
 |          in the dict/Series/DataFrame will not be filled). This value cannot
 |          be a list.
 |      method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 |          Method to use for filling holes in reindexed Series
 |          pad / ffill: propagate last valid observation forward to next valid
 |          backfill / bfill: use NEXT valid observation to fill gap
 |      axis : {0, 1, 2, 'items', 'major_axis', 'minor_axis'}
 |      inplace : boolean, default False
 |          If True, fill in place. Note: this will modify any
 |          other views on this object, (e.g. a no-copy slice for a column in a
 |          DataFrame).
 |      limit : int, default None
 |          If method is specified, this is the maximum number of consecutive
 |          NaN values to forward/backward fill. In other words, if there is
 |          a gap with more than this number of consecutive NaNs, it will only
 |          be partially filled. If method is not specified, this is the
 |          maximum number of entries along the entire axis where NaNs will be
 |          filled.
 |      downcast : dict, default is None
 |          a dict of item->dtype of what to downcast if possible,
 |          or the string 'infer' which will try to downcast to an appropriate
 |          equal type (e.g. float64 to int64 if possible)
 |      
 |      See Also
 |      --------
 |      reindex, asfreq
 |      
 |      Returns
 |      -------
 |      filled : Panel
 |  
 |  floordiv(self, other, axis=0)
 |      Integer division of series and other, element-wise (binary operator `floordiv`).
 |      Equivalent to ``panel // other``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.rfloordiv
 |  
 |  ge(self, other, axis=None)
 |      Wrapper for comparison method ge
 |  
 |  get_value(self, *args, **kwargs)
 |      Quickly retrieve single value at (item, major, minor) location
 |      
 |      Parameters
 |      ----------
 |      item : item label (panel item)
 |      major : major axis label (panel item row)
 |      minor : minor axis label (panel item column)
 |      takeable : interpret the passed labels as indexers, default False
 |      
 |      Returns
 |      -------
 |      value : scalar value
 |  
 |  groupby(self, function, axis='major')
 |      Group data on given axis, returning GroupBy object
 |      
 |      Parameters
 |      ----------
 |      function : callable
 |          Mapping function for chosen access
 |      axis : {'major', 'minor', 'items'}, default 'major'
 |      
 |      Returns
 |      -------
 |      grouped : PanelGroupBy
 |  
 |  gt(self, other, axis=None)
 |      Wrapper for comparison method gt
 |  
 |  head(self, n=5)
 |      Returns first n rows
 |  
 |  join(self, other, how='left', lsuffix='', rsuffix='')
 |      Join items with other Panel either on major and minor axes column
 |      
 |      Parameters
 |      ----------
 |      other : Panel or list of Panels
 |          Index should be similar to one of the columns in this one
 |      how : {'left', 'right', 'outer', 'inner'}
 |          How to handle indexes of the two objects. Default: 'left'
 |          for joining on index, None otherwise
 |          * left: use calling frame's index
 |          * right: use input frame's index
 |          * outer: form union of indexes
 |          * inner: use intersection of indexes
 |      lsuffix : string
 |          Suffix to use from left frame's overlapping columns
 |      rsuffix : string
 |          Suffix to use from right frame's overlapping columns
 |      
 |      Returns
 |      -------
 |      joined : Panel
 |  
 |  kurt(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 |      Return unbiased kurtosis over requested axis using Fisher's definition of
 |      kurtosis (kurtosis of normal == 0.0). Normalized by N-1
 |      
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      kurt : DataFrame or Panel (if level specified)
 |  
 |  kurtosis = kurt(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 |  
 |  le(self, other, axis=None)
 |      Wrapper for comparison method le
 |  
 |  lt(self, other, axis=None)
 |      Wrapper for comparison method lt
 |  
 |  mad(self, axis=None, skipna=None, level=None)
 |      Return the mean absolute deviation of the values for the requested axis
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      mad : DataFrame or Panel (if level specified)
 |  
 |  major_xs(self, key)
 |      Return slice of panel along major axis
 |      
 |      Parameters
 |      ----------
 |      key : object
 |          Major axis label
 |      
 |      Returns
 |      -------
 |      y : DataFrame
 |          index -> minor axis, columns -> items
 |      
 |      Notes
 |      -----
 |      major_xs is only for getting, not setting values.
 |      
 |      MultiIndex Slicers is a generic way to get/set values on any level or
 |      levels and is a superset of major_xs functionality, see
 |      :ref:`MultiIndex Slicers <advanced.mi_slicers>`
 |  
 |  max(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 |      This method returns the maximum of the values in the object.
 |                  If you want the *index* of the maximum, use ``idxmax``. This is
 |                  the equivalent of the ``numpy.ndarray`` method ``argmax``.
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      max : DataFrame or Panel (if level specified)
 |  
 |  mean(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 |      Return the mean of the values for the requested axis
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      mean : DataFrame or Panel (if level specified)
 |  
 |  median(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 |      Return the median of the values for the requested axis
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      median : DataFrame or Panel (if level specified)
 |  
 |  min(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 |      This method returns the minimum of the values in the object.
 |                  If you want the *index* of the minimum, use ``idxmin``. This is
 |                  the equivalent of the ``numpy.ndarray`` method ``argmin``.
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      min : DataFrame or Panel (if level specified)
 |  
 |  minor_xs(self, key)
 |      Return slice of panel along minor axis
 |      
 |      Parameters
 |      ----------
 |      key : object
 |          Minor axis label
 |      
 |      Returns
 |      -------
 |      y : DataFrame
 |          index -> major axis, columns -> items
 |      
 |      Notes
 |      -----
 |      minor_xs is only for getting, not setting values.
 |      
 |      MultiIndex Slicers is a generic way to get/set values on any level or
 |      levels and is a superset of minor_xs functionality, see
 |      :ref:`MultiIndex Slicers <advanced.mi_slicers>`
 |  
 |  mod(self, other, axis=0)
 |      Modulo of series and other, element-wise (binary operator `mod`).
 |      Equivalent to ``panel % other``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.rmod
 |  
 |  mul(self, other, axis=0)
 |      Multiplication of series and other, element-wise (binary operator `mul`).
 |      Equivalent to ``panel * other``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.rmul
 |  
 |  multiply = mul(self, other, axis=0)
 |  
 |  ne(self, other, axis=None)
 |      Wrapper for comparison method ne
 |  
 |  pow(self, other, axis=0)
 |      Exponential power of series and other, element-wise (binary operator `pow`).
 |      Equivalent to ``panel ** other``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.rpow
 |  
 |  prod(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 |      Return the product of the values for the requested axis
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      prod : DataFrame or Panel (if level specified)
 |  
 |  product = prod(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 |  
 |  radd(self, other, axis=0)
 |      Addition of series and other, element-wise (binary operator `radd`).
 |      Equivalent to ``other + panel``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.add
 |  
 |  rdiv = rtruediv(self, other, axis=0)
 |  
 |  reindex(self, items=None, major_axis=None, minor_axis=None, **kwargs)
 |      Conform Panel to new index with optional filling logic, placing
 |      NA/NaN in locations having no value in the previous index. A new object
 |      is produced unless the new index is equivalent to the current one and
 |      copy=False
 |      
 |      Parameters
 |      ----------
 |      items, major_axis, minor_axis : array-like, optional (can be specified in order, or as
 |          keywords)
 |          New labels / index to conform to. Preferably an Index object to
 |          avoid duplicating data
 |      method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}, optional
 |          method to use for filling holes in reindexed DataFrame.
 |          Please note: this is only  applicable to DataFrames/Series with a
 |          monotonically increasing/decreasing index.
 |      
 |          * default: don't fill gaps
 |          * pad / ffill: propagate last valid observation forward to next
 |            valid
 |          * backfill / bfill: use next valid observation to fill gap
 |          * nearest: use nearest valid observations to fill gap
 |      
 |      copy : boolean, default True
 |          Return a new object, even if the passed indexes are the same
 |      level : int or name
 |          Broadcast across a level, matching Index values on the
 |          passed MultiIndex level
 |      fill_value : scalar, default np.NaN
 |          Value to use for missing values. Defaults to NaN, but can be any
 |          "compatible" value
 |      limit : int, default None
 |          Maximum number of consecutive elements to forward or backward fill
 |      tolerance : optional
 |          Maximum distance between original and new labels for inexact
 |          matches. The values of the index at the matching locations most
 |          satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
 |      
 |          .. versionadded:: 0.17.0
 |      
 |      Examples
 |      --------
 |      
 |      Create a dataframe with some fictional data.
 |      
 |      >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
 |      >>> df = pd.DataFrame({
 |      ...      'http_status': [200,200,404,404,301],
 |      ...      'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]},
 |      ...       index=index)
 |      >>> df
 |                  http_status  response_time
 |      Firefox            200           0.04
 |      Chrome             200           0.02
 |      Safari             404           0.07
 |      IE10               404           0.08
 |      Konqueror          301           1.00
 |      
 |      Create a new index and reindex the dataframe. By default
 |      values in the new index that do not have corresponding
 |      records in the dataframe are assigned ``NaN``.
 |      
 |      >>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
 |      ...             'Chrome']
 |      >>> df.reindex(new_index)
 |                     http_status  response_time
 |      Safari                 404           0.07
 |      Iceweasel              NaN            NaN
 |      Comodo Dragon          NaN            NaN
 |      IE10                   404           0.08
 |      Chrome                 200           0.02
 |      
 |      We can fill in the missing values by passing a value to
 |      the keyword ``fill_value``. Because the index is not monotonically
 |      increasing or decreasing, we cannot use arguments to the keyword
 |      ``method`` to fill the ``NaN`` values.
 |      
 |      >>> df.reindex(new_index, fill_value=0)
 |                     http_status  response_time
 |      Safari                 404           0.07
 |      Iceweasel                0           0.00
 |      Comodo Dragon            0           0.00
 |      IE10                   404           0.08
 |      Chrome                 200           0.02
 |      
 |      >>> df.reindex(new_index, fill_value='missing')
 |                    http_status response_time
 |      Safari                404          0.07
 |      Iceweasel         missing       missing
 |      Comodo Dragon     missing       missing
 |      IE10                  404          0.08
 |      Chrome                200          0.02
 |      
 |      To further illustrate the filling functionality in
 |      ``reindex``, we will create a dataframe with a
 |      monotonically increasing index (for example, a sequence
 |      of dates).
 |      
 |      >>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
 |      >>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
 |      ...                    index=date_index)
 |      >>> df2
 |                  prices
 |      2010-01-01     100
 |      2010-01-02     101
 |      2010-01-03     NaN
 |      2010-01-04     100
 |      2010-01-05      89
 |      2010-01-06      88
 |      
 |      Suppose we decide to expand the dataframe to cover a wider
 |      date range.
 |      
 |      >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
 |      >>> df2.reindex(date_index2)
 |                  prices
 |      2009-12-29     NaN
 |      2009-12-30     NaN
 |      2009-12-31     NaN
 |      2010-01-01     100
 |      2010-01-02     101
 |      2010-01-03     NaN
 |      2010-01-04     100
 |      2010-01-05      89
 |      2010-01-06      88
 |      2010-01-07     NaN
 |      
 |      The index entries that did not have a value in the original data frame
 |      (for example, '2009-12-29') are by default filled with ``NaN``.
 |      If desired, we can fill in the missing values using one of several
 |      options.
 |      
 |      For example, to backpropagate the last valid value to fill the ``NaN``
 |      values, pass ``bfill`` as an argument to the ``method`` keyword.
 |      
 |      >>> df2.reindex(date_index2, method='bfill')
 |                  prices
 |      2009-12-29     100
 |      2009-12-30     100
 |      2009-12-31     100
 |      2010-01-01     100
 |      2010-01-02     101
 |      2010-01-03     NaN
 |      2010-01-04     100
 |      2010-01-05      89
 |      2010-01-06      88
 |      2010-01-07     NaN
 |      
 |      Please note that the ``NaN`` value present in the original dataframe
 |      (at index value 2010-01-03) will not be filled by any of the
 |      value propagation schemes. This is because filling while reindexing
 |      does not look at dataframe values, but only compares the original and
 |      desired indexes. If you do want to fill in the ``NaN`` values present
 |      in the original dataframe, use the ``fillna()`` method.
 |      
 |      Returns
 |      -------
 |      reindexed : Panel
 |  
 |  reindex_axis(self, labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)
 |      Conform input object to new index with optional
 |      filling logic, placing NA/NaN in locations having no value in the
 |      previous index. A new object is produced unless the new index is
 |      equivalent to the current one and copy=False
 |      
 |      Parameters
 |      ----------
 |      labels : array-like
 |          New labels / index to conform to. Preferably an Index object to
 |          avoid duplicating data
 |      axis : {0, 1, 2, 'items', 'major_axis', 'minor_axis'}
 |      method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}, optional
 |          Method to use for filling holes in reindexed DataFrame:
 |      
 |          * default: don't fill gaps
 |          * pad / ffill: propagate last valid observation forward to next
 |            valid
 |          * backfill / bfill: use next valid observation to fill gap
 |          * nearest: use nearest valid observations to fill gap
 |      
 |      copy : boolean, default True
 |          Return a new object, even if the passed indexes are the same
 |      level : int or name
 |          Broadcast across a level, matching Index values on the
 |          passed MultiIndex level
 |      limit : int, default None
 |          Maximum number of consecutive elements to forward or backward fill
 |      tolerance : optional
 |          Maximum distance between original and new labels for inexact
 |          matches. The values of the index at the matching locations most
 |          satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
 |      
 |          .. versionadded:: 0.17.0
 |      
 |      Examples
 |      --------
 |      >>> df.reindex_axis(['A', 'B', 'C'], axis=1)
 |      
 |      See Also
 |      --------
 |      reindex, reindex_like
 |      
 |      Returns
 |      -------
 |      reindexed : Panel
 |  
 |  rename(self, items=None, major_axis=None, minor_axis=None, **kwargs)
 |      Alter axes input function or functions. Function / dict values must be
 |      unique (1-to-1). Labels not contained in a dict / Series will be left
 |      as-is. Extra labels listed don't throw an error. Alternatively, change
 |      ``Series.name`` with a scalar value (Series only).
 |      
 |      Parameters
 |      ----------
 |      items, major_axis, minor_axis : scalar, list-like, dict-like or function, optional
 |          Scalar or list-like will alter the ``Series.name`` attribute,
 |          and raise on DataFrame or Panel.
 |          dict-like or functions are transformations to apply to
 |          that axis' values
 |      copy : boolean, default True
 |          Also copy underlying data
 |      inplace : boolean, default False
 |          Whether to return a new Panel. If True then value of copy is
 |          ignored.
 |      
 |      Returns
 |      -------
 |      renamed : Panel (new object)
 |      
 |      See Also
 |      --------
 |      pandas.NDFrame.rename_axis
 |      
 |      Examples
 |      --------
 |      >>> s = pd.Series([1, 2, 3])
 |      >>> s
 |      0    1
 |      1    2
 |      2    3
 |      dtype: int64
 |      >>> s.rename("my_name") # scalar, changes Series.name
 |      0    1
 |      1    2
 |      2    3
 |      Name: my_name, dtype: int64
 |      >>> s.rename(lambda x: x ** 2)  # function, changes labels
 |      0    1
 |      1    2
 |      4    3
 |      dtype: int64
 |      >>> s.rename({1: 3, 2: 5})  # mapping, changes labels
 |      0    1
 |      3    2
 |      5    3
 |      dtype: int64
 |      >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
 |      >>> df.rename(2)
 |      ...
 |      TypeError: 'int' object is not callable
 |      >>> df.rename(index=str, columns={"A": "a", "B": "c"})
 |         a  c
 |      0  1  4
 |      1  2  5
 |      2  3  6
 |      >>> df.rename(index=str, columns={"A": "a", "C": "c"})
 |         a  B
 |      0  1  4
 |      1  2  5
 |      2  3  6
 |  
 |  rfloordiv(self, other, axis=0)
 |      Integer division of series and other, element-wise (binary operator `rfloordiv`).
 |      Equivalent to ``other // panel``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.floordiv
 |  
 |  rmod(self, other, axis=0)
 |      Modulo of series and other, element-wise (binary operator `rmod`).
 |      Equivalent to ``other % panel``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.mod
 |  
 |  rmul(self, other, axis=0)
 |      Multiplication of series and other, element-wise (binary operator `rmul`).
 |      Equivalent to ``other * panel``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.mul
 |  
 |  round(self, decimals=0, *args, **kwargs)
 |      Round each value in Panel to a specified number of decimal places.
 |      
 |      .. versionadded:: 0.18.0
 |      
 |      Parameters
 |      ----------
 |      decimals : int
 |          Number of decimal places to round to (default: 0).
 |          If decimals is negative, it specifies the number of
 |          positions to the left of the decimal point.
 |      
 |      Returns
 |      -------
 |      Panel object
 |      
 |      See Also
 |      --------
 |      numpy.around
 |  
 |  rpow(self, other, axis=0)
 |      Exponential power of series and other, element-wise (binary operator `rpow`).
 |      Equivalent to ``other ** panel``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.pow
 |  
 |  rsub(self, other, axis=0)
 |      Subtraction of series and other, element-wise (binary operator `rsub`).
 |      Equivalent to ``other - panel``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.sub
 |  
 |  rtruediv(self, other, axis=0)
 |      Floating division of series and other, element-wise (binary operator `rtruediv`).
 |      Equivalent to ``other / panel``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.truediv
 |  
 |  sem(self, axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
 |      Return unbiased standard error of the mean over requested axis.
 |      
 |      Normalized by N-1 by default. This can be changed using the ddof argument
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      ddof : int, default 1
 |          degrees of freedom
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      sem : DataFrame or Panel (if level specified)
 |  
 |  set_value(self, *args, **kwargs)
 |      Quickly set single value at (item, major, minor) location
 |      
 |      Parameters
 |      ----------
 |      item : item label (panel item)
 |      major : major axis label (panel item row)
 |      minor : minor axis label (panel item column)
 |      value : scalar
 |      takeable : interpret the passed labels as indexers, default False
 |      
 |      Returns
 |      -------
 |      panel : Panel
 |          If label combo is contained, will be reference to calling Panel,
 |          otherwise a new object
 |  
 |  shift(self, periods=1, freq=None, axis='major')
 |      Shift index by desired number of periods with an optional time freq.
 |      The shifted data will not include the dropped periods and the
 |      shifted axis will be smaller than the original. This is different
 |      from the behavior of DataFrame.shift()
 |      
 |      Parameters
 |      ----------
 |      periods : int
 |          Number of periods to move, can be positive or negative
 |      freq : DateOffset, timedelta, or time rule string, optional
 |      axis : {'items', 'major', 'minor'} or {0, 1, 2}
 |      
 |      Returns
 |      -------
 |      shifted : Panel
 |  
 |  skew(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 |      Return unbiased skew over requested axis
 |      Normalized by N-1
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      skew : DataFrame or Panel (if level specified)
 |  
 |  std(self, axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
 |      Return sample standard deviation over requested axis.
 |      
 |      Normalized by N-1 by default. This can be changed using the ddof argument
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      ddof : int, default 1
 |          degrees of freedom
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      std : DataFrame or Panel (if level specified)
 |  
 |  sub(self, other, axis=0)
 |      Subtraction of series and other, element-wise (binary operator `sub`).
 |      Equivalent to ``panel - other``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.rsub
 |  
 |  subtract = sub(self, other, axis=0)
 |  
 |  sum(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 |      Return the sum of the values for the requested axis
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      sum : DataFrame or Panel (if level specified)
 |  
 |  tail(self, n=5)
 |      Returns last n rows
 |  
 |  toLong = wrapper(*args, **kwargs)
 |  
 |  to_excel(self, path, na_rep='', engine=None, **kwargs)
 |      Write each DataFrame in Panel to a separate excel sheet
 |      
 |      Parameters
 |      ----------
 |      path : string or ExcelWriter object
 |          File path or existing ExcelWriter
 |      na_rep : string, default ''
 |          Missing data representation
 |      engine : string, default None
 |          write engine to use - you can also set this via the options
 |          ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and
 |          ``io.excel.xlsm.writer``.
 |      
 |      Other Parameters
 |      ----------------
 |      float_format : string, default None
 |          Format string for floating point numbers
 |      cols : sequence, optional
 |          Columns to write
 |      header : boolean or list of string, default True
 |          Write out column names. If a list of string is given it is
 |          assumed to be aliases for the column names
 |      index : boolean, default True
 |          Write row names (index)
 |      index_label : string or sequence, default None
 |          Column label for index column(s) if desired. If None is given, and
 |          `header` and `index` are True, then the index names are used. A
 |          sequence should be given if the DataFrame uses MultiIndex.
 |      startrow : upper left cell row to dump data frame
 |      startcol : upper left cell column to dump data frame
 |      
 |      Notes
 |      -----
 |      Keyword arguments (and na_rep) are passed to the ``to_excel`` method
 |      for each DataFrame written.
 |  
 |  to_frame(self, filter_observations=True)
 |      Transform wide format into long (stacked) format as DataFrame whose
 |      columns are the Panel's items and whose index is a MultiIndex formed
 |      of the Panel's major and minor axes.
 |      
 |      Parameters
 |      ----------
 |      filter_observations : boolean, default True
 |          Drop (major, minor) pairs without a complete set of observations
 |          across all the items
 |      
 |      Returns
 |      -------
 |      y : DataFrame
 |  
 |  to_long = wrapper(*args, **kwargs)
 |  
 |  to_sparse(self, *args, **kwargs)
 |      NOT IMPLEMENTED: do not call this method, as sparsifying is not
 |      supported for Panel objects and will raise an error.
 |      
 |      Convert to SparsePanel
 |  
 |  transpose(self, *args, **kwargs)
 |              Permute the dimensions of the Panel
 |      
 |              Parameters
 |              ----------
 |              args : three positional arguments: each oneof
 |      {0, 1, 2, 'items', 'major_axis', 'minor_axis'}
 |              copy : boolean, default False
 |                  Make a copy of the underlying data. Mixed-dtype data will
 |                  always result in a copy
 |      
 |              Examples
 |              --------
 |              >>> p.transpose(2, 0, 1)
 |              >>> p.transpose(2, 0, 1, copy=True)
 |      
 |              Returns
 |              -------
 |              y : same as input
 |  
 |  truediv(self, other, axis=0)
 |      Floating division of series and other, element-wise (binary operator `truediv`).
 |      Equivalent to ``panel / other``.
 |      
 |      Parameters
 |      ----------
 |      other : DataFrame or Panel
 |      axis : {items, major_axis, minor_axis}
 |          Axis to broadcast over
 |      
 |      Returns
 |      -------
 |      Panel
 |      
 |      See also
 |      --------
 |      Panel.rtruediv
 |  
 |  tshift(self, periods=1, freq=None, axis='major')
 |      Shift the time index, using the index's frequency if available.
 |      
 |      Parameters
 |      ----------
 |      periods : int
 |          Number of periods to move, can be positive or negative
 |      freq : DateOffset, timedelta, or time rule string, default None
 |          Increment to use from the tseries module or time rule (e.g. 'EOM')
 |      axis : int or basestring
 |          Corresponds to the axis that contains the Index
 |      
 |      Notes
 |      -----
 |      If freq is not specified then tries to use the freq or inferred_freq
 |      attributes of the index. If neither of those attributes exist, a
 |      ValueError is thrown
 |      
 |      Returns
 |      -------
 |      shifted : NDFrame
 |  
 |  update(self, other, join='left', overwrite=True, filter_func=None, raise_conflict=False)
 |      Modify Panel in place using non-NA values from passed
 |      Panel, or object coercible to Panel. Aligns on items
 |      
 |      Parameters
 |      ----------
 |      other : Panel, or object coercible to Panel
 |      join : How to join individual DataFrames
 |          {'left', 'right', 'outer', 'inner'}, default 'left'
 |      overwrite : boolean, default True
 |          If True then overwrite values for common keys in the calling panel
 |      filter_func : callable(1d-array) -> 1d-array<boolean>, default None
 |          Can choose to replace values other than NA. Return True for values
 |          that should be updated
 |      raise_conflict : bool
 |          If True, will raise an error if a DataFrame and other both
 |          contain data in the same place.
 |  
 |  var(self, axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
 |      Return unbiased variance over requested axis.
 |      
 |      Normalized by N-1 by default. This can be changed using the ddof argument
 |      
 |      Parameters
 |      ----------
 |      axis : {items (0), major_axis (1), minor_axis (2)}
 |      skipna : boolean, default True
 |          Exclude NA/null values. If an entire row/column is NA, the result
 |          will be NA
 |      level : int or level name, default None
 |          If the axis is a MultiIndex (hierarchical), count along a
 |          particular level, collapsing into a DataFrame
 |      ddof : int, default 1
 |          degrees of freedom
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean columns. If None, will attempt to use
 |          everything, then use only numeric data. Not implemented for Series.
 |      
 |      Returns
 |      -------
 |      var : DataFrame or Panel (if level specified)
 |  
 |  xs(self, key, axis=1)
 |      Return slice of panel along selected axis
 |      
 |      Parameters
 |      ----------
 |      key : object
 |          Label
 |      axis : {'items', 'major', 'minor}, default 1/'major'
 |      
 |      Returns
 |      -------
 |      y : ndim(self)-1
 |      
 |      Notes
 |      -----
 |      xs is only for getting, not setting values.
 |      
 |      MultiIndex Slicers is a generic way to get/set values on any level or
 |      levels and  is a superset of xs functionality, see
 |      :ref:`MultiIndex Slicers <advanced.mi_slicers>`
 |  
 |  ----------------------------------------------------------------------
 |  Class methods defined here:
 |  
 |  fromDict = from_dict(data, intersect=False, orient='items', dtype=None) from builtins.type
 |      Construct Panel from dict of DataFrame objects
 |      
 |      Parameters
 |      ----------
 |      data : dict
 |          {field : DataFrame}
 |      intersect : boolean
 |          Intersect indexes of input DataFrames
 |      orient : {'items', 'minor'}, default 'items'
 |          The "orientation" of the data. If the keys of the passed dict
 |          should be the items of the result panel, pass 'items'
 |          (default). Otherwise if the columns of the values of the passed
 |          DataFrame objects should be the items (which in the case of
 |          mixed-dtype data you should do), instead pass 'minor'
 |      dtype : dtype, default None
 |          Data type to force, otherwise infer
 |      
 |      Returns
 |      -------
 |      Panel
 |  
 |  from_dict(data, intersect=False, orient='items', dtype=None) from builtins.type
 |      Construct Panel from dict of DataFrame objects
 |      
 |      Parameters
 |      ----------
 |      data : dict
 |          {field : DataFrame}
 |      intersect : boolean
 |          Intersect indexes of input DataFrames
 |      orient : {'items', 'minor'}, default 'items'
 |          The "orientation" of the data. If the keys of the passed dict
 |          should be the items of the result panel, pass 'items'
 |          (default). Otherwise if the columns of the values of the passed
 |          DataFrame objects should be the items (which in the case of
 |          mixed-dtype data you should do), instead pass 'minor'
 |      dtype : dtype, default None
 |          Data type to force, otherwise infer
 |      
 |      Returns
 |      -------
 |      Panel
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |  
 |  items
 |  
 |  major_axis
 |  
 |  minor_axis
 |  
 |  ----------------------------------------------------------------------
 |  Methods inherited from pandas.core.generic.NDFrame:
 |  
 |  __abs__(self)
 |  
 |  __array__(self, dtype=None)
 |  
 |  __array_wrap__(self, result, context=None)
 |  
 |  __bool__ = __nonzero__(self)
 |  
 |  __contains__(self, key)
 |      True if the key is in the info axis
 |  
 |  __delitem__(self, key)
 |      Delete item
 |  
 |  __finalize__(self, other, method=None, **kwargs)
 |      Propagate metadata from other to self.
 |      
 |      Parameters
 |      ----------
 |      other : the object from which to get the attributes that we are going
 |          to propagate
 |      method : optional, a passed method name ; possibly to take different
 |          types of propagation actions based on this
 |  
 |  __getattr__(self, name)
 |      After regular attribute access, try looking up the name
 |      This allows simpler access to columns for interactive use.
 |  
 |  __getstate__(self)
 |  
 |  __hash__(self)
 |      Return hash(self).
 |  
 |  __invert__(self)
 |  
 |  __iter__(self)
 |      Iterate over infor axis
 |  
 |  __len__(self)
 |      Returns length of info axis
 |  
 |  __neg__(self)
 |  
 |  __nonzero__(self)
 |  
 |  __round__(self, decimals=0)
 |  
 |  __setattr__(self, name, value)
 |      After regular attribute access, try setting the name
 |      This allows simpler access to columns for interactive use.
 |  
 |  __setstate__(self, state)
 |  
 |  abs(self)
 |      Return an object with absolute value taken--only applicable to objects
 |      that are all numeric.
 |      
 |      Returns
 |      -------
 |      abs: type of caller
 |  
 |  add_prefix(self, prefix)
 |      Concatenate prefix string with panel items names.
 |      
 |      Parameters
 |      ----------
 |      prefix : string
 |      
 |      Returns
 |      -------
 |      with_prefix : type of caller
 |  
 |  add_suffix(self, suffix)
 |      Concatenate suffix string with panel items names.
 |      
 |      Parameters
 |      ----------
 |      suffix : string
 |      
 |      Returns
 |      -------
 |      with_suffix : type of caller
 |  
 |  as_blocks(self, copy=True)
 |      Convert the frame to a dict of dtype -> Constructor Types that each has
 |      a homogeneous dtype.
 |      
 |      NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in
 |            as_matrix)
 |      
 |      Parameters
 |      ----------
 |      copy : boolean, default True
 |      
 |             .. versionadded: 0.16.1
 |      
 |      Returns
 |      -------
 |      values : a dict of dtype -> Constructor Types
 |  
 |  asfreq(self, freq, method=None, how=None, normalize=False)
 |      Convert TimeSeries to specified frequency.
 |      
 |      Optionally provide filling method to pad/backfill missing values.
 |      
 |      Parameters
 |      ----------
 |      freq : DateOffset object, or string
 |      method : {'backfill'/'bfill', 'pad'/'ffill'}, default None
 |          Method to use for filling holes in reindexed Series (note this
 |          does not fill NaNs that already were present):
 |      
 |          * 'pad' / 'ffill': propagate last valid observation forward to next
 |            valid
 |          * 'backfill' / 'bfill': use NEXT valid observation to fill
 |      how : {'start', 'end'}, default end
 |          For PeriodIndex only, see PeriodIndex.asfreq
 |      normalize : bool, default False
 |          Whether to reset output index to midnight
 |      
 |      Returns
 |      -------
 |      converted : type of caller
 |      
 |      To learn more about the frequency strings, please see `this link
 |      <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__.
 |  
 |  asof(self, where, subset=None)
 |      The last row without any NaN is taken (or the last row without
 |      NaN considering only the subset of columns in the case of a DataFrame)
 |      
 |      .. versionadded:: 0.19.0 For DataFrame
 |      
 |      If there is no good value, NaN is returned.
 |      
 |      Parameters
 |      ----------
 |      where : date or array of dates
 |      subset : string or list of strings, default None
 |         if not None use these columns for NaN propagation
 |      
 |      Notes
 |      -----
 |      Dates are assumed to be sorted
 |      Raises if this is not the case
 |      
 |      Returns
 |      -------
 |      where is scalar
 |      
 |        - value or NaN if input is Series
 |        - Series if input is DataFrame
 |      
 |      where is Index: same shape object as input
 |      
 |      See Also
 |      --------
 |      merge_asof
 |  
 |  astype(self, dtype, copy=True, raise_on_error=True, **kwargs)
 |      Cast object to input numpy.dtype
 |      Return a copy when copy = True (be really careful with this!)
 |      
 |      Parameters
 |      ----------
 |      dtype : data type, or dict of column name -> data type
 |          Use a numpy.dtype or Python type to cast entire pandas object to
 |          the same type. Alternatively, use {col: dtype, ...}, where col is a
 |          column label and dtype is a numpy.dtype or Python type to cast one
 |          or more of the DataFrame's columns to column-specific types.
 |      raise_on_error : raise on invalid input
 |      kwargs : keyword arguments to pass on to the constructor
 |      
 |      Returns
 |      -------
 |      casted : type of caller
 |  
 |  at_time(self, time, asof=False)
 |      Select values at particular time of day (e.g. 9:30AM).
 |      
 |      Parameters
 |      ----------
 |      time : datetime.time or string
 |      
 |      Returns
 |      -------
 |      values_at_time : type of caller
 |  
 |  between_time(self, start_time, end_time, include_start=True, include_end=True)
 |      Select values between particular times of the day (e.g., 9:00-9:30 AM).
 |      
 |      Parameters
 |      ----------
 |      start_time : datetime.time or string
 |      end_time : datetime.time or string
 |      include_start : boolean, default True
 |      include_end : boolean, default True
 |      
 |      Returns
 |      -------
 |      values_between_time : type of caller
 |  
 |  bfill(self, axis=None, inplace=False, limit=None, downcast=None)
 |      Synonym for NDFrame.fillna(method='bfill')
 |  
 |  bool(self)
 |      Return the bool of a single element PandasObject.
 |      
 |      This must be a boolean scalar value, either True or False.  Raise a
 |      ValueError if the PandasObject does not have exactly 1 element, or that
 |      element is not boolean
 |  
 |  clip(self, lower=None, upper=None, axis=None, *args, **kwargs)
 |      Trim values at input threshold(s).
 |      
 |      Parameters
 |      ----------
 |      lower : float or array_like, default None
 |      upper : float or array_like, default None
 |      axis : int or string axis name, optional
 |          Align object with lower and upper along the given axis.
 |      
 |      Returns
 |      -------
 |      clipped : Series
 |      
 |      Examples
 |      --------
 |      >>> df
 |        0         1
 |      0  0.335232 -1.256177
 |      1 -1.367855  0.746646
 |      2  0.027753 -1.176076
 |      3  0.230930 -0.679613
 |      4  1.261967  0.570967
 |      >>> df.clip(-1.0, 0.5)
 |                0         1
 |      0  0.335232 -1.000000
 |      1 -1.000000  0.500000
 |      2  0.027753 -1.000000
 |      3  0.230930 -0.679613
 |      4  0.500000  0.500000
 |      >>> t
 |      0   -0.3
 |      1   -0.2
 |      2   -0.1
 |      3    0.0
 |      4    0.1
 |      dtype: float64
 |      >>> df.clip(t, t + 1, axis=0)
 |                0         1
 |      0  0.335232 -0.300000
 |      1 -0.200000  0.746646
 |      2  0.027753 -0.100000
 |      3  0.230930  0.000000
 |      4  1.100000  0.570967
 |  
 |  clip_lower(self, threshold, axis=None)
 |      Return copy of the input with values below given value(s) truncated.
 |      
 |      Parameters
 |      ----------
 |      threshold : float or array_like
 |      axis : int or string axis name, optional
 |          Align object with threshold along the given axis.
 |      
 |      See Also
 |      --------
 |      clip
 |      
 |      Returns
 |      -------
 |      clipped : same type as input
 |  
 |  clip_upper(self, threshold, axis=None)
 |      Return copy of input with values above given value(s) truncated.
 |      
 |      Parameters
 |      ----------
 |      threshold : float or array_like
 |      axis : int or string axis name, optional
 |          Align object with threshold along the given axis.
 |      
 |      See Also
 |      --------
 |      clip
 |      
 |      Returns
 |      -------
 |      clipped : same type as input
 |  
 |  consolidate(self, inplace=False)
 |      Compute NDFrame with "consolidated" internals (data of each dtype
 |      grouped together in a single ndarray). Mainly an internal API function,
 |      but available here to the savvy user
 |      
 |      Parameters
 |      ----------
 |      inplace : boolean, default False
 |          If False return new object, otherwise modify existing object
 |      
 |      Returns
 |      -------
 |      consolidated : type of caller
 |  
 |  convert_objects(self, convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)
 |      Deprecated.
 |      
 |      Attempt to infer better dtype for object columns
 |      
 |      Parameters
 |      ----------
 |      convert_dates : boolean, default True
 |          If True, convert to date where possible. If 'coerce', force
 |          conversion, with unconvertible values becoming NaT.
 |      convert_numeric : boolean, default False
 |          If True, attempt to coerce to numbers (including strings), with
 |          unconvertible values becoming NaN.
 |      convert_timedeltas : boolean, default True
 |          If True, convert to timedelta where possible. If 'coerce', force
 |          conversion, with unconvertible values becoming NaT.
 |      copy : boolean, default True
 |          If True, return a copy even if no copy is necessary (e.g. no
 |          conversion was done). Note: This is meant for internal use, and
 |          should not be confused with inplace.
 |      
 |      See Also
 |      --------
 |      pandas.to_datetime : Convert argument to datetime.
 |      pandas.to_timedelta : Convert argument to timedelta.
 |      pandas.to_numeric : Return a fixed frequency timedelta index,
 |          with day as the default.
 |      
 |      Returns
 |      -------
 |      converted : same as input object
 |  
 |  copy(self, deep=True)
 |      Make a copy of this objects data.
 |      
 |      Parameters
 |      ----------
 |      deep : boolean or string, default True
 |          Make a deep copy, including a copy of the data and the indices.
 |          With ``deep=False`` neither the indices or the data are copied.
 |      
 |          Note that when ``deep=True`` data is copied, actual python objects
 |          will not be copied recursively, only the reference to the object.
 |          This is in contrast to ``copy.deepcopy`` in the Standard Library,
 |          which recursively copies object data.
 |      
 |      Returns
 |      -------
 |      copy : type of caller
 |  
 |  describe(self, percentiles=None, include=None, exclude=None)
 |      Generate various summary statistics, excluding NaN values.
 |      
 |      Parameters
 |      ----------
 |      percentiles : array-like, optional
 |          The percentiles to include in the output. Should all
 |          be in the interval [0, 1]. By default `percentiles` is
 |          [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.
 |      include, exclude : list-like, 'all', or None (default)
 |          Specify the form of the returned result. Either:
 |      
 |          - None to both (default). The result will include only
 |            numeric-typed columns or, if none are, only categorical columns.
 |          - A list of dtypes or strings to be included/excluded.
 |            To select all numeric types use numpy numpy.number. To select
 |            categorical objects use type object. See also the select_dtypes
 |            documentation. eg. df.describe(include=['O'])
 |          - If include is the string 'all', the output column-set will
 |            match the input one.
 |      
 |      Returns
 |      -------
 |      summary: NDFrame of summary statistics
 |      
 |      Notes
 |      -----
 |      The output DataFrame index depends on the requested dtypes:
 |      
 |      For numeric dtypes, it will include: count, mean, std, min,
 |      max, and lower, 50, and upper percentiles.
 |      
 |      For object dtypes (e.g. timestamps or strings), the index
 |      will include the count, unique, most common, and frequency of the
 |      most common. Timestamps also include the first and last items.
 |      
 |      For mixed dtypes, the index will be the union of the corresponding
 |      output types. Non-applicable entries will be filled with NaN.
 |      Note that mixed-dtype outputs can only be returned from mixed-dtype
 |      inputs and appropriate use of the include/exclude arguments.
 |      
 |      If multiple values have the highest count, then the
 |      `count` and `most common` pair will be arbitrarily chosen from
 |      among those with the highest count.
 |      
 |      The include, exclude arguments are ignored for Series.
 |      
 |      See Also
 |      --------
 |      DataFrame.select_dtypes
 |  
 |  drop(self, labels, axis=0, level=None, inplace=False, errors='raise')
 |      Return new object with labels in requested axis removed.
 |      
 |      Parameters
 |      ----------
 |      labels : single label or list-like
 |      axis : int or axis name
 |      level : int or level name, default None
 |          For MultiIndex
 |      inplace : bool, default False
 |          If True, do operation inplace and return None.
 |      errors : {'ignore', 'raise'}, default 'raise'
 |          If 'ignore', suppress error and existing labels are dropped.
 |      
 |          .. versionadded:: 0.16.1
 |      
 |      Returns
 |      -------
 |      dropped : type of caller
 |  
 |  equals(self, other)
 |      Determines if two NDFrame objects contain the same elements. NaNs in
 |      the same location are considered equal.
 |  
 |  ffill(self, axis=None, inplace=False, limit=None, downcast=None)
 |      Synonym for NDFrame.fillna(method='ffill')
 |  
 |  filter(self, items=None, like=None, regex=None, axis=None)
 |      Subset rows or columns of dataframe according to labels in
 |      the specified index.
 |      
 |      Note that this routine does not filter a dataframe on its
 |      contents. The filter is applied to the labels of the index.
 |      
 |      Parameters
 |      ----------
 |      items : list-like
 |          List of info axis to restrict to (must not all be present)
 |      like : string
 |          Keep info axis where "arg in col == True"
 |      regex : string (regular expression)
 |          Keep info axis with re.search(regex, col) == True
 |      axis : int or string axis name
 |          The axis to filter on.  By default this is the info axis,
 |          'index' for Series, 'columns' for DataFrame
 |      
 |      Returns
 |      -------
 |      same type as input object
 |      
 |      Examples
 |      --------
 |      >>> df
 |      one  two  three
 |      mouse     1    2      3
 |      rabbit    4    5      6
 |      
 |      >>> # select columns by name
 |      >>> df.filter(items=['one', 'three'])
 |      one  three
 |      mouse     1      3
 |      rabbit    4      6
 |      
 |      >>> # select columns by regular expression
 |      >>> df.filter(regex='e$', axis=1)
 |      one  three
 |      mouse     1      3
 |      rabbit    4      6
 |      
 |      >>> # select rows containing 'bbi'
 |      >>> df.filter(like='bbi', axis=0)
 |      one  two  three
 |      rabbit    4    5      6
 |      
 |      See Also
 |      --------
 |      pandas.DataFrame.select
 |      
 |      Notes
 |      -----
 |      The ``items``, ``like``, and ``regex`` parameters are
 |      enforced to be mutually exclusive.
 |      
 |      ``axis`` defaults to the info axis that is used when indexing
 |      with ``[]``.
 |  
 |  first(self, offset)
 |      Convenience method for subsetting initial periods of time series data
 |      based on a date offset.
 |      
 |      Parameters
 |      ----------
 |      offset : string, DateOffset, dateutil.relativedelta
 |      
 |      Examples
 |      --------
 |      ts.first('10D') -> First 10 days
 |      
 |      Returns
 |      -------
 |      subset : type of caller
 |  
 |  get(self, key, default=None)
 |      Get item from object for given key (DataFrame column, Panel slice,
 |      etc.). Returns default value if not found.
 |      
 |      Parameters
 |      ----------
 |      key : object
 |      
 |      Returns
 |      -------
 |      value : type of items contained in object
 |  
 |  get_dtype_counts(self)
 |      Return the counts of dtypes in this object.
 |  
 |  get_ftype_counts(self)
 |      Return the counts of ftypes in this object.
 |  
 |  get_values(self)
 |      same as values (but handles sparseness conversions)
 |  
 |  interpolate(self, method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', downcast=None, **kwargs)
 |      Interpolate values according to different methods.
 |      
 |      Please note that only ``method='linear'`` is supported for
 |      DataFrames/Series with a MultiIndex.
 |      
 |      Parameters
 |      ----------
 |      method : {'linear', 'time', 'index', 'values', 'nearest', 'zero',
 |                'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh',
 |                'polynomial', 'spline', 'piecewise_polynomial',
 |                'from_derivatives', 'pchip', 'akima'}
 |      
 |          * 'linear': ignore the index and treat the values as equally
 |            spaced. This is the only method supported on MultiIndexes.
 |            default
 |          * 'time': interpolation works on daily and higher resolution
 |            data to interpolate given length of interval
 |          * 'index', 'values': use the actual numerical values of the index
 |          * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic',
 |            'barycentric', 'polynomial' is passed to
 |            ``scipy.interpolate.interp1d``. Both 'polynomial' and 'spline'
 |            require that you also specify an `order` (int),
 |            e.g. df.interpolate(method='polynomial', order=4).
 |            These use the actual numerical values of the index.
 |          * 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima' are all
 |            wrappers around the scipy interpolation methods of similar
 |            names. These use the actual numerical values of the index. See
 |            the scipy documentation for more on their behavior
 |            `here <http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation>`__  # noqa
 |            `and here <http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html>`__  # noqa
 |          * 'from_derivatives' refers to BPoly.from_derivatives which
 |            replaces 'piecewise_polynomial' interpolation method in scipy 0.18
 |      
 |          .. versionadded:: 0.18.1
 |      
 |             Added support for the 'akima' method
 |             Added interpolate method 'from_derivatives' which replaces
 |             'piecewise_polynomial' in scipy 0.18; backwards-compatible with
 |             scipy < 0.18
 |      
 |      axis : {0, 1}, default 0
 |          * 0: fill column-by-column
 |          * 1: fill row-by-row
 |      limit : int, default None.
 |          Maximum number of consecutive NaNs to fill.
 |      limit_direction : {'forward', 'backward', 'both'}, defaults to 'forward'
 |          If limit is specified, consecutive NaNs will be filled in this
 |          direction.
 |      
 |          .. versionadded:: 0.17.0
 |      
 |      inplace : bool, default False
 |          Update the NDFrame in place if possible.
 |      downcast : optional, 'infer' or None, defaults to None
 |          Downcast dtypes if possible.
 |      kwargs : keyword arguments to pass on to the interpolating function.
 |      
 |      Returns
 |      -------
 |      Series or DataFrame of same shape interpolated at the NaNs
 |      
 |      See Also
 |      --------
 |      reindex, replace, fillna
 |      
 |      Examples
 |      --------
 |      
 |      Filling in NaNs
 |      
 |      >>> s = pd.Series([0, 1, np.nan, 3])
 |      >>> s.interpolate()
 |      0    0
 |      1    1
 |      2    2
 |      3    3
 |      dtype: float64
 |  
 |  isnull(self)
 |      Return a boolean same-sized object indicating if the values are null.
 |      
 |      See Also
 |      --------
 |      notnull : boolean inverse of isnull
 |  
 |  iteritems(self)
 |      Iterate over (label, values) on info axis
 |      
 |      This is index for Series, columns for DataFrame, major_axis for Panel,
 |      and so on.
 |  
 |  iterkv(self, *args, **kwargs)
 |      iteritems alias used to get around 2to3. Deprecated
 |  
 |  keys(self)
 |      Get the 'info axis' (see Indexing for more)
 |      
 |      This is index for Series, columns for DataFrame and major_axis for
 |      Panel.
 |  
 |  last(self, offset)
 |      Convenience method for subsetting final periods of time series data
 |      based on a date offset.
 |      
 |      Parameters
 |      ----------
 |      offset : string, DateOffset, dateutil.relativedelta
 |      
 |      Examples
 |      --------
 |      ts.last('5M') -> Last 5 months
 |      
 |      Returns
 |      -------
 |      subset : type of caller
 |  
 |  mask(self, cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)
 |      Return an object of same shape as self and whose corresponding
 |      entries are from self where cond is False and otherwise are from
 |      other.
 |      
 |      Parameters
 |      ----------
 |      cond : boolean NDFrame, array or callable
 |          If cond is callable, it is computed on the NDFrame and
 |          should return boolean NDFrame or array.
 |          The callable must not change input NDFrame
 |          (though pandas doesn't check it).
 |      
 |          .. versionadded:: 0.18.1
 |      
 |          A callable can be used as cond.
 |      
 |      other : scalar, NDFrame, or callable
 |          If other is callable, it is computed on the NDFrame and
 |          should return scalar or NDFrame.
 |          The callable must not change input NDFrame
 |          (though pandas doesn't check it).
 |      
 |          .. versionadded:: 0.18.1
 |      
 |          A callable can be used as other.
 |      
 |      inplace : boolean, default False
 |          Whether to perform the operation in place on the data
 |      axis : alignment axis if needed, default None
 |      level : alignment level if needed, default None
 |      try_cast : boolean, default False
 |          try to cast the result back to the input type (if possible),
 |      raise_on_error : boolean, default True
 |          Whether to raise on invalid data types (e.g. trying to where on
 |          strings)
 |      
 |      Returns
 |      -------
 |      wh : same type as caller
 |      
 |      Notes
 |      -----
 |      The mask method is an application of the if-then idiom. For each
 |      element in the calling DataFrame, if ``cond`` is ``False`` the
 |      element is used; otherwise the corresponding element from the DataFrame
 |      ``other`` is used.
 |      
 |      The signature for :func:`DataFrame.where` differs from
 |      :func:`numpy.where`. Roughly ``df1.where(m, df2)`` is equivalent to
 |      ``np.where(m, df1, df2)``.
 |      
 |      For further details and examples see the ``mask`` documentation in
 |      :ref:`indexing <indexing.where_mask>`.
 |      
 |      Examples
 |      --------
 |      >>> s = pd.Series(range(5))
 |      >>> s.where(s > 0)
 |      0    NaN
 |      1    1.0
 |      2    2.0
 |      3    3.0
 |      4    4.0
 |      
 |      >>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
 |      >>> m = df % 3 == 0
 |      >>> df.where(m, -df)
 |         A  B
 |      0  0 -1
 |      1 -2  3
 |      2 -4 -5
 |      3  6 -7
 |      4 -8  9
 |      >>> df.where(m, -df) == np.where(m, df, -df)
 |            A     B
 |      0  True  True
 |      1  True  True
 |      2  True  True
 |      3  True  True
 |      4  True  True
 |      >>> df.where(m, -df) == df.mask(~m, -df)
 |            A     B
 |      0  True  True
 |      1  True  True
 |      2  True  True
 |      3  True  True
 |      4  True  True
 |      
 |      See Also
 |      --------
 |      :func:`DataFrame.where`
 |  
 |  notnull(self)
 |      Return a boolean same-sized object indicating if the values are
 |      not null.
 |      
 |      See Also
 |      --------
 |      isnull : boolean inverse of notnull
 |  
 |  pct_change(self, periods=1, fill_method='pad', limit=None, freq=None, **kwargs)
 |      Percent change over given number of periods.
 |      
 |      Parameters
 |      ----------
 |      periods : int, default 1
 |          Periods to shift for forming percent change
 |      fill_method : str, default 'pad'
 |          How to handle NAs before computing percent changes
 |      limit : int, default None
 |          The number of consecutive NAs to fill before stopping
 |      freq : DateOffset, timedelta, or offset alias string, optional
 |          Increment to use from time series API (e.g. 'M' or BDay())
 |      
 |      Returns
 |      -------
 |      chg : NDFrame
 |      
 |      Notes
 |      -----
 |      
 |      By default, the percentage change is calculated along the stat
 |      axis: 0, or ``Index``, for ``DataFrame`` and 1, or ``minor`` for
 |      ``Panel``. You can change this with the ``axis`` keyword argument.
 |  
 |  pipe(self, func, *args, **kwargs)
 |      Apply func(self, \*args, \*\*kwargs)
 |      
 |      .. versionadded:: 0.16.2
 |      
 |      Parameters
 |      ----------
 |      func : function
 |          function to apply to the NDFrame.
 |          ``args``, and ``kwargs`` are passed into ``func``.
 |          Alternatively a ``(callable, data_keyword)`` tuple where
 |          ``data_keyword`` is a string indicating the keyword of
 |          ``callable`` that expects the NDFrame.
 |      args : positional arguments passed into ``func``.
 |      kwargs : a dictionary of keyword arguments passed into ``func``.
 |      
 |      Returns
 |      -------
 |      object : the return type of ``func``.
 |      
 |      Notes
 |      -----
 |      
 |      Use ``.pipe`` when chaining together functions that expect
 |      on Series or DataFrames. Instead of writing
 |      
 |      >>> f(g(h(df), arg1=a), arg2=b, arg3=c)
 |      
 |      You can write
 |      
 |      >>> (df.pipe(h)
 |      ...    .pipe(g, arg1=a)
 |      ...    .pipe(f, arg2=b, arg3=c)
 |      ... )
 |      
 |      If you have a function that takes the data as (say) the second
 |      argument, pass a tuple indicating which keyword expects the
 |      data. For example, suppose ``f`` takes its data as ``arg2``:
 |      
 |      >>> (df.pipe(h)
 |      ...    .pipe(g, arg1=a)
 |      ...    .pipe((f, 'arg2'), arg1=a, arg3=c)
 |      ...  )
 |      
 |      See Also
 |      --------
 |      pandas.DataFrame.apply
 |      pandas.DataFrame.applymap
 |      pandas.Series.map
 |  
 |  pop(self, item)
 |      Return item and drop from frame. Raise KeyError if not found.
 |  
 |  rank(self, axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)
 |      Compute numerical data ranks (1 through n) along axis. Equal values are
 |      assigned a rank that is the average of the ranks of those values
 |      
 |      Parameters
 |      ----------
 |      axis: {0 or 'index', 1 or 'columns'}, default 0
 |          index to direct ranking
 |      method : {'average', 'min', 'max', 'first', 'dense'}
 |          * average: average rank of group
 |          * min: lowest rank in group
 |          * max: highest rank in group
 |          * first: ranks assigned in order they appear in the array
 |          * dense: like 'min', but rank always increases by 1 between groups
 |      numeric_only : boolean, default None
 |          Include only float, int, boolean data. Valid only for DataFrame or
 |          Panel objects
 |      na_option : {'keep', 'top', 'bottom'}
 |          * keep: leave NA values where they are
 |          * top: smallest rank if ascending
 |          * bottom: smallest rank if descending
 |      ascending : boolean, default True
 |          False for ranks by high (1) to low (N)
 |      pct : boolean, default False
 |          Computes percentage rank of data
 |      
 |      Returns
 |      -------
 |      ranks : same type as caller
 |  
 |  reindex_like(self, other, method=None, copy=True, limit=None, tolerance=None)
 |      Return an object with matching indices to myself.
 |      
 |      Parameters
 |      ----------
 |      other : Object
 |      method : string or None
 |      copy : boolean, default True
 |      limit : int, default None
 |          Maximum number of consecutive labels to fill for inexact matches.
 |      tolerance : optional
 |          Maximum distance between labels of the other object and this
 |          object for inexact matches.
 |      
 |          .. versionadded:: 0.17.0
 |      
 |      Notes
 |      -----
 |      Like calling s.reindex(index=other.index, columns=other.columns,
 |                             method=...)
 |      
 |      Returns
 |      -------
 |      reindexed : same as input
 |  
 |  rename_axis(self, mapper, axis=0, copy=True, inplace=False)
 |      Alter index and / or columns using input function or functions.
 |      A scaler or list-like for ``mapper`` will alter the ``Index.name``
 |      or ``MultiIndex.names`` attribute.
 |      A function or dict for ``mapper`` will alter the labels.
 |      Function / dict values must be unique (1-to-1). Labels not contained in
 |      a dict / Series will be left as-is.
 |      
 |      Parameters
 |      ----------
 |      mapper : scalar, list-like, dict-like or function, optional
 |      axis : int or string, default 0
 |      copy : boolean, default True
 |          Also copy underlying data
 |      inplace : boolean, default False
 |      
 |      Returns
 |      -------
 |      renamed : type of caller
 |      
 |      See Also
 |      --------
 |      pandas.NDFrame.rename
 |      pandas.Index.rename
 |      
 |      Examples
 |      --------
 |      >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
 |      >>> df.rename_axis("foo")  # scalar, alters df.index.name
 |           A  B
 |      foo
 |      0    1  4
 |      1    2  5
 |      2    3  6
 |      >>> df.rename_axis(lambda x: 2 * x)  # function: alters labels
 |         A  B
 |      0  1  4
 |      2  2  5
 |      4  3  6
 |      >>> df.rename_axis({"A": "ehh", "C": "see"}, axis="columns")  # mapping
 |         ehh  B
 |      0    1  4
 |      1    2  5
 |      2    3  6
 |  
 |  replace(self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)
 |      Replace values given in 'to_replace' with 'value'.
 |      
 |      Parameters
 |      ----------
 |      to_replace : str, regex, list, dict, Series, numeric, or None
 |      
 |          * str or regex:
 |      
 |              - str: string exactly matching `to_replace` will be replaced
 |                with `value`
 |              - regex: regexs matching `to_replace` will be replaced with
 |                `value`
 |      
 |          * list of str, regex, or numeric:
 |      
 |              - First, if `to_replace` and `value` are both lists, they
 |                **must** be the same length.
 |              - Second, if ``regex=True`` then all of the strings in **both**
 |                lists will be interpreted as regexs otherwise they will match
 |                directly. This doesn't matter much for `value` since there
 |                are only a few possible substitution regexes you can use.
 |              - str and regex rules apply as above.
 |      
 |          * dict:
 |      
 |              - Nested dictionaries, e.g., {'a': {'b': nan}}, are read as
 |                follows: look in column 'a' for the value 'b' and replace it
 |                with nan. You can nest regular expressions as well. Note that
 |                column names (the top-level dictionary keys in a nested
 |                dictionary) **cannot** be regular expressions.
 |              - Keys map to column names and values map to substitution
 |                values. You can treat this as a special case of passing two
 |                lists except that you are specifying the column to search in.
 |      
 |          * None:
 |      
 |              - This means that the ``regex`` argument must be a string,
 |                compiled regular expression, or list, dict, ndarray or Series
 |                of such elements. If `value` is also ``None`` then this
 |                **must** be a nested dictionary or ``Series``.
 |      
 |          See the examples section for examples of each of these.
 |      value : scalar, dict, list, str, regex, default None
 |          Value to use to fill holes (e.g. 0), alternately a dict of values
 |          specifying which value to use for each column (columns not in the
 |          dict will not be filled). Regular expressions, strings and lists or
 |          dicts of such objects are also allowed.
 |      inplace : boolean, default False
 |          If True, in place. Note: this will modify any
 |          other views on this object (e.g. a column form a DataFrame).
 |          Returns the caller if this is True.
 |      limit : int, default None
 |          Maximum size gap to forward or backward fill
 |      regex : bool or same types as `to_replace`, default False
 |          Whether to interpret `to_replace` and/or `value` as regular
 |          expressions. If this is ``True`` then `to_replace` *must* be a
 |          string. Otherwise, `to_replace` must be ``None`` because this
 |          parameter will be interpreted as a regular expression or a list,
 |          dict, or array of regular expressions.
 |      method : string, optional, {'pad', 'ffill', 'bfill'}
 |          The method to use when for replacement, when ``to_replace`` is a
 |          ``list``.
 |      
 |      See Also
 |      --------
 |      NDFrame.reindex
 |      NDFrame.asfreq
 |      NDFrame.fillna
 |      
 |      Returns
 |      -------
 |      filled : NDFrame
 |      
 |      Raises
 |      ------
 |      AssertionError
 |          * If `regex` is not a ``bool`` and `to_replace` is not ``None``.
 |      TypeError
 |          * If `to_replace` is a ``dict`` and `value` is not a ``list``,
 |            ``dict``, ``ndarray``, or ``Series``
 |          * If `to_replace` is ``None`` and `regex` is not compilable into a
 |            regular expression or is a list, dict, ndarray, or Series.
 |      ValueError
 |          * If `to_replace` and `value` are ``list`` s or ``ndarray`` s, but
 |            they are not the same length.
 |      
 |      Notes
 |      -----
 |      * Regex substitution is performed under the hood with ``re.sub``. The
 |        rules for substitution for ``re.sub`` are the same.
 |      * Regular expressions will only substitute on strings, meaning you
 |        cannot provide, for example, a regular expression matching floating
 |        point numbers and expect the columns in your frame that have a
 |        numeric dtype to be matched. However, if those floating point numbers
 |        *are* strings, then you can do this.
 |      * This method has *a lot* of options. You are encouraged to experiment
 |        and play with this method to gain intuition about how it works.
 |  
 |  resample(self, rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)
 |      Convenience method for frequency conversion and resampling of time
 |      series.  Object must have a datetime-like index (DatetimeIndex,
 |      PeriodIndex, or TimedeltaIndex), or pass datetime-like values
 |      to the on or level keyword.
 |      
 |      Parameters
 |      ----------
 |      rule : string
 |          the offset string or object representing target conversion
 |      axis : int, optional, default 0
 |      closed : {'right', 'left'}
 |          Which side of bin interval is closed
 |      label : {'right', 'left'}
 |          Which bin edge label to label bucket with
 |      convention : {'start', 'end', 's', 'e'}
 |      loffset : timedelta
 |          Adjust the resampled time labels
 |      base : int, default 0
 |          For frequencies that evenly subdivide 1 day, the "origin" of the
 |          aggregated intervals. For example, for '5min' frequency, base could
 |          range from 0 through 4. Defaults to 0
 |      on : string, optional
 |          For a DataFrame, column to use instead of index for resampling.
 |          Column must be datetime-like.
 |      
 |          .. versionadded:: 0.19.0
 |      
 |      level : string or int, optional
 |          For a MultiIndex, level (name or number) to use for
 |          resampling.  Level must be datetime-like.
 |      
 |          .. versionadded:: 0.19.0
 |      
 |      To learn more about the offset strings, please see `this link
 |      <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__.
 |      
 |      Examples
 |      --------
 |      
 |      Start by creating a series with 9 one minute timestamps.
 |      
 |      >>> index = pd.date_range('1/1/2000', periods=9, freq='T')
 |      >>> series = pd.Series(range(9), index=index)
 |      >>> series
 |      2000-01-01 00:00:00    0
 |      2000-01-01 00:01:00    1
 |      2000-01-01 00:02:00    2
 |      2000-01-01 00:03:00    3
 |      2000-01-01 00:04:00    4
 |      2000-01-01 00:05:00    5
 |      2000-01-01 00:06:00    6
 |      2000-01-01 00:07:00    7
 |      2000-01-01 00:08:00    8
 |      Freq: T, dtype: int64
 |      
 |      Downsample the series into 3 minute bins and sum the values
 |      of the timestamps falling into a bin.
 |      
 |      >>> series.resample('3T').sum()
 |      2000-01-01 00:00:00     3
 |      2000-01-01 00:03:00    12
 |      2000-01-01 00:06:00    21
 |      Freq: 3T, dtype: int64
 |      
 |      Downsample the series into 3 minute bins as above, but label each
 |      bin using the right edge instead of the left. Please note that the
 |      value in the bucket used as the label is not included in the bucket,
 |      which it labels. For example, in the original series the
 |      bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed
 |      value in the resampled bucket with the label``2000-01-01 00:03:00``
 |      does not include 3 (if it did, the summed value would be 6, not 3).
 |      To include this value close the right side of the bin interval as
 |      illustrated in the example below this one.
 |      
 |      >>> series.resample('3T', label='right').sum()
 |      2000-01-01 00:03:00     3
 |      2000-01-01 00:06:00    12
 |      2000-01-01 00:09:00    21
 |      Freq: 3T, dtype: int64
 |      
 |      Downsample the series into 3 minute bins as above, but close the right
 |      side of the bin interval.
 |      
 |      >>> series.resample('3T', label='right', closed='right').sum()
 |      2000-01-01 00:00:00     0
 |      2000-01-01 00:03:00     6
 |      2000-01-01 00:06:00    15
 |      2000-01-01 00:09:00    15
 |      Freq: 3T, dtype: int64
 |      
 |      Upsample the series into 30 second bins.
 |      
 |      >>> series.resample('30S').asfreq()[0:5] #select first 5 rows
 |      2000-01-01 00:00:00     0
 |      2000-01-01 00:00:30   NaN
 |      2000-01-01 00:01:00     1
 |      2000-01-01 00:01:30   NaN
 |      2000-01-01 00:02:00     2
 |      Freq: 30S, dtype: float64
 |      
 |      Upsample the series into 30 second bins and fill the ``NaN``
 |      values using the ``pad`` method.
 |      
 |      >>> series.resample('30S').pad()[0:5]
 |      2000-01-01 00:00:00    0
 |      2000-01-01 00:00:30    0
 |      2000-01-01 00:01:00    1
 |      2000-01-01 00:01:30    1
 |      2000-01-01 00:02:00    2
 |      Freq: 30S, dtype: int64
 |      
 |      Upsample the series into 30 second bins and fill the
 |      ``NaN`` values using the ``bfill`` method.
 |      
 |      >>> series.resample('30S').bfill()[0:5]
 |      2000-01-01 00:00:00    0
 |      2000-01-01 00:00:30    1
 |      2000-01-01 00:01:00    1
 |      2000-01-01 00:01:30    2
 |      2000-01-01 00:02:00    2
 |      Freq: 30S, dtype: int64
 |      
 |      Pass a custom function via ``apply``
 |      
 |      >>> def custom_resampler(array_like):
 |      ...     return np.sum(array_like)+5
 |      
 |      >>> series.resample('3T').apply(custom_resampler)
 |      2000-01-01 00:00:00     8
 |      2000-01-01 00:03:00    17
 |      2000-01-01 00:06:00    26
 |      Freq: 3T, dtype: int64
 |  
 |  sample(self, n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)
 |      Returns a random sample of items from an axis of object.
 |      
 |      .. versionadded:: 0.16.1
 |      
 |      Parameters
 |      ----------
 |      n : int, optional
 |          Number of items from axis to return. Cannot be used with `frac`.
 |          Default = 1 if `frac` = None.
 |      frac : float, optional
 |          Fraction of axis items to return. Cannot be used with `n`.
 |      replace : boolean, optional
 |          Sample with or without replacement. Default = False.
 |      weights : str or ndarray-like, optional
 |          Default 'None' results in equal probability weighting.
 |          If passed a Series, will align with target object on index. Index
 |          values in weights not found in sampled object will be ignored and
 |          index values in sampled object not in weights will be assigned
 |          weights of zero.
 |          If called on a DataFrame, will accept the name of a column
 |          when axis = 0.
 |          Unless weights are a Series, weights must be same length as axis
 |          being sampled.
 |          If weights do not sum to 1, they will be normalized to sum to 1.
 |          Missing values in the weights column will be treated as zero.
 |          inf and -inf values not allowed.
 |      random_state : int or numpy.random.RandomState, optional
 |          Seed for the random number generator (if int), or numpy RandomState
 |          object.
 |      axis : int or string, optional
 |          Axis to sample. Accepts axis number or name. Default is stat axis
 |          for given data type (0 for Series and DataFrames, 1 for Panels).
 |      
 |      Returns
 |      -------
 |      A new object of same type as caller.
 |      
 |      Examples
 |      --------
 |      
 |      Generate an example ``Series`` and ``DataFrame``:
 |      
 |      >>> s = pd.Series(np.random.randn(50))
 |      >>> s.head()
 |      0   -0.038497
 |      1    1.820773
 |      2   -0.972766
 |      3   -1.598270
 |      4   -1.095526
 |      dtype: float64
 |      >>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
 |      >>> df.head()
 |                A         B         C         D
 |      0  0.016443 -2.318952 -0.566372 -1.028078
 |      1 -1.051921  0.438836  0.658280 -0.175797
 |      2 -1.243569 -0.364626 -0.215065  0.057736
 |      3  1.768216  0.404512 -0.385604 -1.457834
 |      4  1.072446 -1.137172  0.314194 -0.046661
 |      
 |      Next extract a random sample from both of these objects...
 |      
 |      3 random elements from the ``Series``:
 |      
 |      >>> s.sample(n=3)
 |      27   -0.994689
 |      55   -1.049016
 |      67   -0.224565
 |      dtype: float64
 |      
 |      And a random 10% of the ``DataFrame`` with replacement:
 |      
 |      >>> df.sample(frac=0.1, replace=True)
 |                 A         B         C         D
 |      35  1.981780  0.142106  1.817165 -0.290805
 |      49 -1.336199 -0.448634 -0.789640  0.217116
 |      40  0.823173 -0.078816  1.009536  1.015108
 |      15  1.421154 -0.055301 -1.922594 -0.019696
 |      6  -0.148339  0.832938  1.787600 -1.383767
 |  
 |  select(self, crit, axis=0)
 |      Return data corresponding to axis labels matching criteria
 |      
 |      Parameters
 |      ----------
 |      crit : function
 |          To be called on each index (label). Should return True or False
 |      axis : int
 |      
 |      Returns
 |      -------
 |      selection : type of caller
 |  
 |  set_axis(self, axis, labels)
 |      public verson of axis assignment
 |  
 |  slice_shift(self, periods=1, axis=0)
 |      Equivalent to `shift` without copying data. The shifted data will
 |      not include the dropped periods and the shifted axis will be smaller
 |      than the original.
 |      
 |      Parameters
 |      ----------
 |      periods : int
 |          Number of periods to move, can be positive or negative
 |      
 |      Notes
 |      -----
 |      While the `slice_shift` is faster than `shift`, you may pay for it
 |      later during alignment.
 |      
 |      Returns
 |      -------
 |      shifted : same type as caller
 |  
 |  sort_index(self, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True)
 |      Sort object by labels (along an axis)
 |      
 |      Parameters
 |      ----------
 |      axis : axes to direct sorting
 |      level : int or level name or list of ints or list of level names
 |          if not None, sort on values in specified index level(s)
 |      ascending : boolean, default True
 |          Sort ascending vs. descending
 |      inplace : bool, default False
 |          if True, perform operation in-place
 |      kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
 |           Choice of sorting algorithm. See also ndarray.np.sort for more
 |           information.  `mergesort` is the only stable algorithm. For
 |           DataFrames, this option is only applied when sorting on a single
 |           column or label.
 |      na_position : {'first', 'last'}, default 'last'
 |           `first` puts NaNs at the beginning, `last` puts NaNs at the end
 |      sort_remaining : bool, default True
 |          if true and sorting by level and index is multilevel, sort by other
 |          levels too (in order) after sorting by specified level
 |      
 |      Returns
 |      -------
 |      sorted_obj : NDFrame
 |  
 |  sort_values(self, by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
 |  
 |  squeeze(self, **kwargs)
 |      Squeeze length 1 dimensions.
 |  
 |  swapaxes(self, axis1, axis2, copy=True)
 |      Interchange axes and swap values axes appropriately
 |      
 |      Returns
 |      -------
 |      y : same as input
 |  
 |  swaplevel(self, i=-2, j=-1, axis=0)
 |      Swap levels i and j in a MultiIndex on a particular axis
 |      
 |      Parameters
 |      ----------
 |      i, j : int, string (can be mixed)
 |          Level of index to be swapped. Can pass level name as string.
 |      
 |      Returns
 |      -------
 |      swapped : type of caller (new object)
 |      
 |      .. versionchanged:: 0.18.1
 |      
 |         The indexes ``i`` and ``j`` are now optional, and default to
 |         the two innermost levels of the index.
 |  
 |  take(self, indices, axis=0, convert=True, is_copy=True, **kwargs)
 |      Analogous to ndarray.take
 |      
 |      Parameters
 |      ----------
 |      indices : list / array of ints
 |      axis : int, default 0
 |      convert : translate neg to pos indices (default)
 |      is_copy : mark the returned frame as a copy
 |      
 |      Returns
 |      -------
 |      taken : type of caller
 |  
 |  to_clipboard(self, excel=None, sep=None, **kwargs)
 |      Attempt to write text representation of object to the system clipboard
 |      This can be pasted into Excel, for example.
 |      
 |      Parameters
 |      ----------
 |      excel : boolean, defaults to True
 |              if True, use the provided separator, writing in a csv
 |              format for allowing easy pasting into excel.
 |              if False, write a string representation of the object
 |              to the clipboard
 |      sep : optional, defaults to tab
 |      other keywords are passed to to_csv
 |      
 |      Notes
 |      -----
 |      Requirements for your platform
 |        - Linux: xclip, or xsel (with gtk or PyQt4 modules)
 |        - Windows: none
 |        - OS X: none
 |  
 |  to_dense(self)
 |      Return dense representation of NDFrame (as opposed to sparse)
 |  
 |  to_hdf(self, path_or_buf, key, **kwargs)
 |      Write the contained data to an HDF5 file using HDFStore.
 |      
 |      Parameters
 |      ----------
 |      path_or_buf : the path (string) or HDFStore object
 |      key : string
 |          indentifier for the group in the store
 |      mode : optional, {'a', 'w', 'r+'}, default 'a'
 |      
 |        ``'w'``
 |            Write; a new file is created (an existing file with the same
 |            name would be deleted).
 |        ``'a'``
 |            Append; an existing file is opened for reading and writing,
 |            and if the file does not exist it is created.
 |        ``'r+'``
 |            It is similar to ``'a'``, but the file must already exist.
 |      format : 'fixed(f)|table(t)', default is 'fixed'
 |          fixed(f) : Fixed format
 |                     Fast writing/reading. Not-appendable, nor searchable
 |          table(t) : Table format
 |                     Write as a PyTables Table structure which may perform
 |                     worse but allow more flexible operations like searching
 |                     / selecting subsets of the data
 |      append : boolean, default False
 |          For Table formats, append the input data to the existing
 |      data_columns :  list of columns, or True, default None
 |          List of columns to create as indexed data columns for on-disk
 |          queries, or True to use all columns. By default only the axes
 |          of the object are indexed. See `here
 |          <http://pandas.pydata.org/pandas-docs/stable/io.html#query-via-data-columns>`__.
 |      
 |          Applicable only to format='table'.
 |      complevel : int, 1-9, default 0
 |          If a complib is specified compression will be applied
 |          where possible
 |      complib : {'zlib', 'bzip2', 'lzo', 'blosc', None}, default None
 |          If complevel is > 0 apply compression to objects written
 |          in the store wherever possible
 |      fletcher32 : bool, default False
 |          If applying compression use the fletcher32 checksum
 |      dropna : boolean, default False.
 |          If true, ALL nan rows will not be written to store.
 |  
 |  to_json(self, path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False)
 |      Convert the object to a JSON string.
 |      
 |      Note NaN's and None will be converted to null and datetime objects
 |      will be converted to UNIX timestamps.
 |      
 |      Parameters
 |      ----------
 |      path_or_buf : the path or buffer to write the result string
 |          if this is None, return a StringIO of the converted string
 |      orient : string
 |      
 |          * Series
 |      
 |            - default is 'index'
 |            - allowed values are: {'split','records','index'}
 |      
 |          * DataFrame
 |      
 |            - default is 'columns'
 |            - allowed values are:
 |              {'split','records','index','columns','values'}
 |      
 |          * The format of the JSON string
 |      
 |            - split : dict like
 |              {index -> [index], columns -> [columns], data -> [values]}
 |            - records : list like
 |              [{column -> value}, ... , {column -> value}]
 |            - index : dict like {index -> {column -> value}}
 |            - columns : dict like {column -> {index -> value}}
 |            - values : just the values array
 |      
 |      date_format : {'epoch', 'iso'}
 |          Type of date conversion. `epoch` = epoch milliseconds,
 |          `iso`` = ISO8601, default is epoch.
 |      double_precision : The number of decimal places to use when encoding
 |          floating point values, default 10.
 |      force_ascii : force encoded string to be ASCII, default True.
 |      date_unit : string, default 'ms' (milliseconds)
 |          The time unit to encode to, governs timestamp and ISO8601
 |          precision.  One of 's', 'ms', 'us', 'ns' for second, millisecond,
 |          microsecond, and nanosecond respectively.
 |      default_handler : callable, default None
 |          Handler to call if object cannot otherwise be converted to a
 |          suitable format for JSON. Should receive a single argument which is
 |          the object to convert and return a serialisable object.
 |      lines : boolean, defalut False
 |          If 'orient' is 'records' write out line delimited json format. Will
 |          throw ValueError if incorrect 'orient' since others are not list
 |          like.
 |      
 |          .. versionadded:: 0.19.0
 |      
 |      
 |      Returns
 |      -------
 |      same type as input object with filtered info axis
 |  
 |  to_msgpack(self, path_or_buf=None, encoding='utf-8', **kwargs)
 |      msgpack (serialize) object to input file path
 |      
 |      THIS IS AN EXPERIMENTAL LIBRARY and the storage format
 |      may not be stable until a future release.
 |      
 |      Parameters
 |      ----------
 |      path : string File path, buffer-like, or None
 |          if None, return generated string
 |      append : boolean whether to append to an existing msgpack
 |          (default is False)
 |      compress : type of compressor (zlib or blosc), default to None (no
 |          compression)
 |  
 |  to_pickle(self, path)
 |      Pickle (serialize) object to input file path.
 |      
 |      Parameters
 |      ----------
 |      path : string
 |          File path
 |  
 |  to_sql(self, name, con, flavor=None, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None)
 |      Write records stored in a DataFrame to a SQL database.
 |      
 |      Parameters
 |      ----------
 |      name : string
 |          Name of SQL table
 |      con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
 |          Using SQLAlchemy makes it possible to use any DB supported by that
 |          library. If a DBAPI2 object, only sqlite3 is supported.
 |      flavor : 'sqlite', default None
 |          DEPRECATED: this parameter will be removed in a future version,
 |          as 'sqlite' is the only supported option if SQLAlchemy is not
 |          installed.
 |      schema : string, default None
 |          Specify the schema (if database flavor supports this). If None, use
 |          default schema.
 |      if_exists : {'fail', 'replace', 'append'}, default 'fail'
 |          - fail: If table exists, do nothing.
 |          - replace: If table exists, drop it, recreate it, and insert data.
 |          - append: If table exists, insert data. Create if does not exist.
 |      index : boolean, default True
 |          Write DataFrame index as a column.
 |      index_label : string or sequence, default None
 |          Column label for index column(s). If None is given (default) and
 |          `index` is True, then the index names are used.
 |          A sequence should be given if the DataFrame uses MultiIndex.
 |      chunksize : int, default None
 |          If not None, then rows will be written in batches of this size at a
 |          time.  If None, all rows will be written at once.
 |      dtype : dict of column name to SQL type, default None
 |          Optional specifying the datatype for columns. The SQL type should
 |          be a SQLAlchemy type, or a string for sqlite3 fallback connection.
 |  
 |  to_xarray(self)
 |      Return an xarray object from the pandas object.
 |      
 |      Returns
 |      -------
 |      a DataArray for a Series
 |      a Dataset for a DataFrame
 |      a DataArray for higher dims
 |      
 |      Examples
 |      --------
 |      >>> df = pd.DataFrame({'A' : [1, 1, 2],
 |                             'B' : ['foo', 'bar', 'foo'],
 |                             'C' : np.arange(4.,7)})
 |      >>> df
 |         A    B    C
 |      0  1  foo  4.0
 |      1  1  bar  5.0
 |      2  2  foo  6.0
 |      
 |      >>> df.to_xarray()
 |      <xarray.Dataset>
 |      Dimensions:  (index: 3)
 |      Coordinates:
 |        * index    (index) int64 0 1 2
 |      Data variables:
 |          A        (index) int64 1 1 2
 |          B        (index) object 'foo' 'bar' 'foo'
 |          C        (index) float64 4.0 5.0 6.0
 |      
 |      >>> df = pd.DataFrame({'A' : [1, 1, 2],
 |                             'B' : ['foo', 'bar', 'foo'],
 |                             'C' : np.arange(4.,7)}
 |                           ).set_index(['B','A'])
 |      >>> df
 |               C
 |      B   A
 |      foo 1  4.0
 |      bar 1  5.0
 |      foo 2  6.0
 |      
 |      >>> df.to_xarray()
 |      <xarray.Dataset>
 |      Dimensions:  (A: 2, B: 2)
 |      Coordinates:
 |        * B        (B) object 'bar' 'foo'
 |        * A        (A) int64 1 2
 |      Data variables:
 |          C        (B, A) float64 5.0 nan 4.0 6.0
 |      
 |      >>> p = pd.Panel(np.arange(24).reshape(4,3,2),
 |                       items=list('ABCD'),
 |                       major_axis=pd.date_range('20130101', periods=3),
 |                       minor_axis=['first', 'second'])
 |      >>> p
 |      <class 'pandas.core.panel.Panel'>
 |      Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
 |      Items axis: A to D
 |      Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
 |      Minor_axis axis: first to second
 |      
 |      >>> p.to_xarray()
 |      <xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
 |      array([[[ 0,  1],
 |              [ 2,  3],
 |              [ 4,  5]],
 |             [[ 6,  7],
 |              [ 8,  9],
 |              [10, 11]],
 |             [[12, 13],
 |              [14, 15],
 |              [16, 17]],
 |             [[18, 19],
 |              [20, 21],
 |              [22, 23]]])
 |      Coordinates:
 |        * items       (items) object 'A' 'B' 'C' 'D'
 |        * major_axis  (major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03  # noqa
 |        * minor_axis  (minor_axis) object 'first' 'second'
 |      
 |      Notes
 |      -----
 |      See the `xarray docs <http://xarray.pydata.org/en/stable/>`__
 |  
 |  truncate(self, before=None, after=None, axis=None, copy=True)
 |      Truncates a sorted NDFrame before and/or after some particular
 |      index value. If the axis contains only datetime values, before/after
 |      parameters are converted to datetime values.
 |      
 |      Parameters
 |      ----------
 |      before : date
 |          Truncate before index value
 |      after : date
 |          Truncate after index value
 |      axis : the truncation axis, defaults to the stat axis
 |      copy : boolean, default is True,
 |          return a copy of the truncated section
 |      
 |      Returns
 |      -------
 |      truncated : type of caller
 |  
 |  tz_convert(self, tz, axis=0, level=None, copy=True)
 |      Convert tz-aware axis to target time zone.
 |      
 |      Parameters
 |      ----------
 |      tz : string or pytz.timezone object
 |      axis : the axis to convert
 |      level : int, str, default None
 |          If axis ia a MultiIndex, convert a specific level. Otherwise
 |          must be None
 |      copy : boolean, default True
 |          Also make a copy of the underlying data
 |      
 |      Returns
 |      -------
 |      
 |      Raises
 |      ------
 |      TypeError
 |          If the axis is tz-naive.
 |  
 |  tz_localize(self, tz, axis=0, level=None, copy=True, ambiguous='raise')
 |      Localize tz-naive TimeSeries to target time zone.
 |      
 |      Parameters
 |      ----------
 |      tz : string or pytz.timezone object
 |      axis : the axis to localize
 |      level : int, str, default None
 |          If axis ia a MultiIndex, localize a specific level. Otherwise
 |          must be None
 |      copy : boolean, default True
 |          Also make a copy of the underlying data
 |      ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
 |          - 'infer' will attempt to infer fall dst-transition hours based on
 |            order
 |          - bool-ndarray where True signifies a DST time, False designates
 |            a non-DST time (note that this flag is only applicable for
 |            ambiguous times)
 |          - 'NaT' will return NaT where there are ambiguous times
 |          - 'raise' will raise an AmbiguousTimeError if there are ambiguous
 |            times
 |      infer_dst : boolean, default False (DEPRECATED)
 |          Attempt to infer fall dst-transition hours based on order
 |      
 |      Returns
 |      -------
 |      
 |      Raises
 |      ------
 |      TypeError
 |          If the TimeSeries is tz-aware and tz is not None.
 |  
 |  where(self, cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)
 |      Return an object of same shape as self and whose corresponding
 |      entries are from self where cond is True and otherwise are from
 |      other.
 |      
 |      Parameters
 |      ----------
 |      cond : boolean NDFrame, array or callable
 |          If cond is callable, it is computed on the NDFrame and
 |          should return boolean NDFrame or array.
 |          The callable must not change input NDFrame
 |          (though pandas doesn't check it).
 |      
 |          .. versionadded:: 0.18.1
 |      
 |          A callable can be used as cond.
 |      
 |      other : scalar, NDFrame, or callable
 |          If other is callable, it is computed on the NDFrame and
 |          should return scalar or NDFrame.
 |          The callable must not change input NDFrame
 |          (though pandas doesn't check it).
 |      
 |          .. versionadded:: 0.18.1
 |      
 |          A callable can be used as other.
 |      
 |      inplace : boolean, default False
 |          Whether to perform the operation in place on the data
 |      axis : alignment axis if needed, default None
 |      level : alignment level if needed, default None
 |      try_cast : boolean, default False
 |          try to cast the result back to the input type (if possible),
 |      raise_on_error : boolean, default True
 |          Whether to raise on invalid data types (e.g. trying to where on
 |          strings)
 |      
 |      Returns
 |      -------
 |      wh : same type as caller
 |      
 |      Notes
 |      -----
 |      The where method is an application of the if-then idiom. For each
 |      element in the calling DataFrame, if ``cond`` is ``True`` the
 |      element is used; otherwise the corresponding element from the DataFrame
 |      ``other`` is used.
 |      
 |      The signature for :func:`DataFrame.where` differs from
 |      :func:`numpy.where`. Roughly ``df1.where(m, df2)`` is equivalent to
 |      ``np.where(m, df1, df2)``.
 |      
 |      For further details and examples see the ``where`` documentation in
 |      :ref:`indexing <indexing.where_mask>`.
 |      
 |      Examples
 |      --------
 |      >>> s = pd.Series(range(5))
 |      >>> s.where(s > 0)
 |      0    NaN
 |      1    1.0
 |      2    2.0
 |      3    3.0
 |      4    4.0
 |      
 |      >>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
 |      >>> m = df % 3 == 0
 |      >>> df.where(m, -df)
 |         A  B
 |      0  0 -1
 |      1 -2  3
 |      2 -4 -5
 |      3  6 -7
 |      4 -8  9
 |      >>> df.where(m, -df) == np.where(m, df, -df)
 |            A     B
 |      0  True  True
 |      1  True  True
 |      2  True  True
 |      3  True  True
 |      4  True  True
 |      >>> df.where(m, -df) == df.mask(~m, -df)
 |            A     B
 |      0  True  True
 |      1  True  True
 |      2  True  True
 |      3  True  True
 |      4  True  True
 |      
 |      See Also
 |      --------
 |      :func:`DataFrame.mask`
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from pandas.core.generic.NDFrame:
 |  
 |  at
 |      Fast label-based scalar accessor
 |      
 |      Similarly to ``loc``, ``at`` provides **label** based scalar lookups.
 |      You can also set using these indexers.
 |  
 |  axes
 |      Return index label(s) of the internal NDFrame
 |  
 |  blocks
 |      Internal property, property synonym for as_blocks()
 |  
 |  dtypes
 |      Return the dtypes in this object.
 |  
 |  empty
 |      True if NDFrame is entirely empty [no items], meaning any of the
 |      axes are of length 0.
 |      
 |      Notes
 |      -----
 |      If NDFrame contains only NaNs, it is still not considered empty. See
 |      the example below.
 |      
 |      Examples
 |      --------
 |      An example of an actual empty DataFrame. Notice the index is empty:
 |      
 |      >>> df_empty = pd.DataFrame({'A' : []})
 |      >>> df_empty
 |      Empty DataFrame
 |      Columns: [A]
 |      Index: []
 |      >>> df_empty.empty
 |      True
 |      
 |      If we only have NaNs in our DataFrame, it is not considered empty! We
 |      will need to drop the NaNs to make the DataFrame empty:
 |      
 |      >>> df = pd.DataFrame({'A' : [np.nan]})
 |      >>> df
 |          A
 |      0 NaN
 |      >>> df.empty
 |      False
 |      >>> df.dropna().empty
 |      True
 |      
 |      See also
 |      --------
 |      pandas.Series.dropna
 |      pandas.DataFrame.dropna
 |  
 |  ftypes
 |      Return the ftypes (indication of sparse/dense and dtype)
 |      in this object.
 |  
 |  iat
 |      Fast integer location scalar accessor.
 |      
 |      Similarly to ``iloc``, ``iat`` provides **integer** based lookups.
 |      You can also set using these indexers.
 |  
 |  iloc
 |      Purely integer-location based indexing for selection by position.
 |      
 |      ``.iloc[]`` is primarily integer position based (from ``0`` to
 |      ``length-1`` of the axis), but may also be used with a boolean
 |      array.
 |      
 |      Allowed inputs are:
 |      
 |      - An integer, e.g. ``5``.
 |      - A list or array of integers, e.g. ``[4, 3, 0]``.
 |      - A slice object with ints, e.g. ``1:7``.
 |      - A boolean array.
 |      - A ``callable`` function with one argument (the calling Series, DataFrame
 |        or Panel) and that returns valid output for indexing (one of the above)
 |      
 |      ``.iloc`` will raise ``IndexError`` if a requested indexer is
 |      out-of-bounds, except *slice* indexers which allow out-of-bounds
 |      indexing (this conforms with python/numpy *slice* semantics).
 |      
 |      See more at :ref:`Selection by Position <indexing.integer>`
 |  
 |  ix
 |      A primarily label-location based indexer, with integer position
 |      fallback.
 |      
 |      ``.ix[]`` supports mixed integer and label based access. It is
 |      primarily label based, but will fall back to integer positional
 |      access unless the corresponding axis is of integer type.
 |      
 |      ``.ix`` is the most general indexer and will support any of the
 |      inputs in ``.loc`` and ``.iloc``. ``.ix`` also supports floating
 |      point label schemes. ``.ix`` is exceptionally useful when dealing
 |      with mixed positional and label based hierachical indexes.
 |      
 |      However, when an axis is integer based, ONLY label based access
 |      and not positional access is supported. Thus, in such cases, it's
 |      usually better to be explicit and use ``.iloc`` or ``.loc``.
 |      
 |      See more at :ref:`Advanced Indexing <advanced>`.
 |  
 |  loc
 |      Purely label-location based indexer for selection by label.
 |      
 |      ``.loc[]`` is primarily label based, but may also be used with a
 |      boolean array.
 |      
 |      Allowed inputs are:
 |      
 |      - A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is
 |        interpreted as a *label* of the index, and **never** as an
 |        integer position along the index).
 |      - A list or array of labels, e.g. ``['a', 'b', 'c']``.
 |      - A slice object with labels, e.g. ``'a':'f'`` (note that contrary
 |        to usual python slices, **both** the start and the stop are included!).
 |      - A boolean array.
 |      - A ``callable`` function with one argument (the calling Series, DataFrame
 |        or Panel) and that returns valid output for indexing (one of the above)
 |      
 |      ``.loc`` will raise a ``KeyError`` when the items are not found.
 |      
 |      See more at :ref:`Selection by Label <indexing.label>`
 |  
 |  ndim
 |      Number of axes / array dimensions
 |  
 |  shape
 |      Return a tuple of axis dimensions
 |  
 |  size
 |      number of elements in the NDFrame
 |  
 |  values
 |      Numpy representation of NDFrame
 |      
 |      Notes
 |      -----
 |      The dtype will be a lower-common-denominator dtype (implicit
 |      upcasting); that is to say if the dtypes (even of numeric types)
 |      are mixed, the one that accommodates all will be chosen. Use this
 |      with care if you are not dealing with the blocks.
 |      
 |      e.g. If the dtypes are float16 and float32, dtype will be upcast to
 |      float32.  If dtypes are int32 and uint8, dtype will be upcast to
 |      int32. By numpy.find_common_type convention, mixing int64 and uint64
 |      will result in a flot64 dtype.
 |  
 |  ----------------------------------------------------------------------
 |  Data and other attributes inherited from pandas.core.generic.NDFrame:
 |  
 |  is_copy = None
 |  
 |  ----------------------------------------------------------------------
 |  Methods inherited from pandas.core.base.PandasObject:
 |  
 |  __dir__(self)
 |      Provide method name lookup and completion
 |      Only provide 'public' methods
 |  
 |  __sizeof__(self)
 |      Generates the total memory usage for a object that returns
 |      either a value or Series of values
 |  
 |  ----------------------------------------------------------------------
 |  Methods inherited from pandas.core.base.StringMixin:
 |  
 |  __bytes__(self)
 |      Return a string representation for a particular object.
 |      
 |      Invoked by bytes(obj) in py3 only.
 |      Yields a bytestring in both py2/py3.
 |  
 |  __repr__(self)
 |      Return a string representation for a particular object.
 |      
 |      Yields Bytestring in Py2, Unicode String in py3.
 |  
 |  __str__(self)
 |      Return a string representation for a particular Object
 |      
 |      Invoked by str(df) in both py2/py3.
 |      Yields Bytestring in Py2, Unicode String in py3.
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from pandas.core.base.StringMixin:
 |  
 |  __dict__
 |      dictionary for instance variables (if defined)
 |  
 |  __weakref__
 |      list of weak references to the object (if defined)


In [16]:
panel.describe


Out[16]:
<bound method NDFrame.describe of <class 'pandas.core.panel.Panel'>
Dimensions: 6 (items) x 2602 (major_axis) x 299 (minor_axis)
Items axis: Open to Adj Close
Major_axis axis: 2007-02-02 00:00:00 to 2017-01-27 00:00:00
Minor_axis axis: A2M.AX to WTC.AX>

In [17]:
panel['Adj Close'].head()


Out[17]:
A2M.AX AAC.AX AAD.AX ABC.AX ABP.AX ACX.AX ADH.AX AGI.AX AGL.AX AHG.AX ... WES.AX WFD.AX WGX.AX WHC.AX WOR.AX WOW.AX WPL.AX WPP.AX WSA.AX WTC.AX
Date
2007-02-02 NaN 1.87014 1.28796 1.26866 6.07736 NaN NaN 0.64365 9.48962 1.010 ... 18.95938 5.39139 NaN NaN 14.304 13.62088 21.30007 1.08340 3.47162 NaN
2007-02-05 NaN 1.85250 1.29722 1.23613 6.01566 NaN NaN 0.64793 9.45753 1.049 ... 18.82664 5.41058 NaN NaN 14.404 13.71637 21.59560 1.09355 3.37370 NaN
2007-02-06 NaN 1.96717 1.27406 1.25007 6.00023 NaN NaN 0.60074 9.43081 1.010 ... 18.84628 5.41537 NaN NaN 14.738 13.91858 21.39101 1.09694 3.31139 NaN
2007-02-07 NaN 2.07304 1.29722 1.28260 6.01566 NaN NaN 0.63506 9.31325 1.030 ... 18.68402 5.54709 NaN NaN 15.106 14.07587 20.99886 1.08340 3.36480 NaN
2007-02-08 NaN 2.02893 1.31112 1.28260 6.01566 NaN NaN 0.59215 9.31325 1.010 ... 18.65943 5.70077 NaN NaN 15.106 14.28370 20.76017 1.06985 3.32920 NaN

5 rows × 299 columns


In [18]:
panel['Adj Close'].tail()


Out[18]:
A2M.AX AAC.AX AAD.AX ABC.AX ABP.AX ACX.AX ADH.AX AGI.AX AGL.AX AHG.AX ... WES.AX WFD.AX WGX.AX WHC.AX WOR.AX WOW.AX WPL.AX WPP.AX WSA.AX WTC.AX
Date
2017-01-23 2.06 1.595 2.10 5.14 2.79 5.55 1.485 1.940 22.33 3.92 ... 40.97 8.93 NaN 2.79 9.51 24.60 32.17 1.150 2.41 5.27
2017-01-24 2.04 1.590 2.08 5.16 2.85 5.57 1.485 1.895 22.41 3.93 ... 41.20 9.03 NaN 2.93 9.75 24.80 31.96 1.170 2.42 5.25
2017-01-25 2.10 1.600 2.07 5.16 2.82 5.44 1.480 1.850 22.24 3.92 ... 40.70 8.91 NaN 2.95 9.99 24.65 32.08 1.155 2.57 5.29
2017-01-26 2.10 1.600 2.07 5.16 2.82 5.44 1.480 1.850 22.24 3.92 ... 40.70 8.91 NaN 2.95 9.99 24.65 32.08 1.155 2.57 5.29
2017-01-27 2.11 1.595 2.10 5.20 2.86 5.65 1.480 1.815 22.66 4.01 ... 41.12 8.96 NaN 2.89 10.16 25.16 32.31 1.140 2.53 5.20

5 rows × 299 columns


In [19]:
panel['Volume'].head()


Out[19]:
A2M.AX AAC.AX AAD.AX ABC.AX ABP.AX ACX.AX ADH.AX AGI.AX AGL.AX AHG.AX ... WES.AX WFD.AX WGX.AX WHC.AX WOR.AX WOW.AX WPL.AX WPP.AX WSA.AX WTC.AX
Date
2007-02-02 NaN 298600.0 1277300.0 662700.0 97200.0 NaN NaN 510100.0 835900.0 5000.0 ... 748600.0 13891400.0 NaN NaN 406900.0 1777900.0 2042000.0 757300.0 3736300.0 NaN
2007-02-05 NaN 1367100.0 68700.0 684900.0 131800.0 NaN NaN 599900.0 418000.0 52500.0 ... 725700.0 10693200.0 NaN NaN 437300.0 1298300.0 1628400.0 686700.0 828000.0 NaN
2007-02-06 NaN 965800.0 909300.0 565200.0 330300.0 NaN NaN 140100.0 554700.0 20300.0 ... 920600.0 17519400.0 NaN NaN 628500.0 2363300.0 1437300.0 424100.0 650400.0 NaN
2007-02-07 NaN 1101800.0 481500.0 595900.0 258800.0 NaN NaN 206800.0 634800.0 1000.0 ... 730500.0 13225000.0 NaN NaN 996500.0 5756700.0 2785100.0 239400.0 376100.0 NaN
2007-02-08 NaN 1278300.0 272700.0 791900.0 572300.0 NaN NaN 182700.0 715900.0 33000.0 ... 670300.0 16526500.0 NaN NaN 0.0 2535600.0 2737200.0 835500.0 1289300.0 NaN

5 rows × 299 columns


In [28]:
# pct_change by default fills forward where values don't exist
panel['returns'] = panel['Adj Close'].pct_change()
panel['returns'].head()


Out[28]:
A2M.AX AAC.AX AAD.AX ABC.AX ABP.AX ACX.AX ADH.AX AGI.AX AGL.AX AHG.AX ... WES.AX WFD.AX WGX.AX WHC.AX WOR.AX WOW.AX WPL.AX WPP.AX WSA.AX WTC.AX
Date
2007-02-02 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2007-02-05 NaN -0.009432 0.007190 -0.025641 -0.010152 NaN NaN 0.006650 -0.003382 0.038614 ... -0.007001 0.003559 NaN NaN 0.006991 0.007011 0.013875 0.009369 -0.028206 NaN
2007-02-06 NaN 0.061900 -0.017854 0.011277 -0.002565 NaN NaN -0.072832 -0.002825 -0.037178 ... 0.001043 0.000885 NaN NaN 0.023188 0.014742 -0.009474 0.003100 -0.018469 NaN
2007-02-07 NaN 0.053818 0.018178 0.026023 0.002572 NaN NaN 0.057130 -0.012466 0.019802 ... -0.008610 0.024323 NaN NaN 0.024969 0.011301 -0.018332 -0.012343 0.016129 NaN
2007-02-08 NaN -0.021278 0.010715 0.000000 0.000000 NaN NaN -0.067568 0.000000 -0.019417 ... -0.001316 0.027705 NaN NaN 0.000000 0.014765 -0.011367 -0.012507 -0.010580 NaN

5 rows × 299 columns


In [29]:
corr = panel['returns'].corr()
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask)] = True

plt.figure(figsize=(50, 50))
with sns.axes_style("white"):
    sns.heatmap(corr, mask=mask, vmin=-1, vmax=1)
    sns.despine()



In [30]:
# cumulative log returns
return_index = ((panel['returns']).cumsum() * 100) + 100
# vami = (df_doy.cumsum() * 100) + 100
return_index


Out[30]:
A2M.AX AAC.AX AAD.AX ABC.AX ABP.AX ACX.AX ADH.AX AGI.AX AGL.AX AHG.AX ... WES.AX WFD.AX WGX.AX WHC.AX WOR.AX WOW.AX WPL.AX WPP.AX WSA.AX WTC.AX
Date
2007-02-02 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2007-02-05 NaN 99.056755 100.718966 97.435877 98.984757 NaN NaN 100.664958 99.661841 103.861386 ... 99.299872 100.355938 NaN NaN 100.699105 100.701056 101.387460 100.936865 97.179415 NaN
2007-02-06 NaN 105.246769 98.933610 98.563590 98.728259 NaN NaN 93.381763 99.379315 100.143560 ... 99.404192 100.444468 NaN NaN 103.017905 102.175280 100.440091 101.246865 95.332481 NaN
2007-02-07 NaN 110.628612 100.751421 101.165845 98.985416 NaN NaN 99.094718 98.132762 102.123758 ... 98.543226 102.876804 NaN NaN 105.514852 103.305352 98.606845 100.012522 96.945399 NaN
2007-02-08 NaN 108.500819 101.822943 101.165845 98.985416 NaN NaN 92.337876 98.132762 100.182010 ... 98.411616 105.647266 NaN NaN 105.514852 104.781851 97.470164 98.761830 95.887387 NaN
2007-02-09 NaN 104.153207 103.590134 101.890155 98.985416 NaN NaN 95.237479 98.706676 102.162208 ... 98.938642 106.082119 NaN NaN 105.514852 106.040278 98.236728 99.394629 98.293670 NaN
2007-02-12 NaN 104.153207 104.978888 103.329132 98.985416 NaN NaN 93.123647 99.105749 101.385509 ... 98.440715 105.995665 NaN NaN 105.514852 105.146992 98.127977 97.508169 96.988128 NaN
2007-02-13 NaN 103.244266 104.978888 103.329132 96.421275 NaN NaN 95.283127 98.253885 102.168288 ... 98.941134 105.995665 NaN NaN 105.514852 105.303749 97.393550 97.828151 98.839946 NaN
2007-02-14 NaN 104.161544 102.581673 106.520329 95.368627 NaN NaN 93.874999 98.024691 105.954696 ... 99.727795 105.258855 NaN NaN 126.307915 105.303749 99.311441 98.467961 98.320558 NaN
2007-02-15 NaN 105.524441 102.581673 107.551905 96.166598 NaN NaN 98.161380 98.426514 105.954696 ... 98.557172 105.913082 NaN NaN 130.045515 104.873358 99.580351 100.055441 97.798459 NaN
2007-02-16 NaN 105.076081 103.282981 107.551905 93.791808 NaN NaN 98.844551 98.197712 105.954696 ... 97.083614 104.395659 NaN NaN 128.999501 103.655234 98.776068 100.992307 103.572583 NaN
2007-02-19 NaN 108.680135 102.586557 108.231868 94.332357 NaN NaN 93.401997 98.197712 104.083788 ... 98.445633 103.955251 NaN NaN 130.008524 104.411070 99.613837 100.064137 104.069051 NaN
2007-02-20 NaN 106.506083 102.586557 108.231868 96.482929 NaN NaN 76.855487 98.541970 104.846419 ... 98.313903 104.751634 NaN NaN 128.792879 103.858338 99.238709 99.438329 104.069051 NaN
2007-02-21 NaN 105.172461 106.095369 107.893819 97.009252 NaN NaN 78.581253 94.941701 104.846419 ... 99.498082 104.795361 NaN NaN 130.745795 103.104004 100.476076 100.068078 102.587559 NaN
2007-02-22 NaN 105.172461 103.722535 122.131285 98.056389 NaN NaN 80.275767 94.882238 104.846419 ... 98.742547 107.427373 NaN NaN 130.924226 105.104123 101.459556 101.004943 100.081182 NaN
2007-02-23 NaN 106.073730 102.680782 124.208459 99.610817 NaN NaN 80.275767 92.806240 104.089560 ... 98.279983 106.145116 NaN NaN 132.516766 107.848935 101.590925 100.695858 100.338205 NaN
2007-02-26 NaN 108.752373 103.031436 122.755313 96.549546 NaN NaN 76.110071 92.746161 109.713965 ... 99.372888 104.629282 NaN NaN 130.737773 107.848935 104.268833 100.384898 103.927884 NaN
2007-02-27 NaN 112.230561 103.380865 123.345015 96.549546 NaN NaN 76.110071 93.957999 114.587611 ... 98.940654 102.475975 NaN NaN 130.559277 109.910139 105.244510 94.777507 107.888410 NaN
2007-02-28 NaN 111.810461 102.335477 120.119087 96.286470 NaN NaN 71.761276 89.946433 111.575563 ... 97.881859 100.184658 NaN NaN 127.929636 111.630504 102.528948 93.127152 99.554965 NaN
2007-03-01 NaN 108.856877 102.688128 120.422307 96.286470 NaN NaN 73.579034 87.762957 111.220638 ... 96.921599 98.897867 NaN NaN 124.645634 110.159815 101.884819 93.798173 99.554965 NaN
2007-03-02 NaN 112.769777 104.442155 120.724610 96.286470 NaN NaN 73.579034 87.316084 111.220638 ... 95.813611 98.012788 NaN NaN 124.645634 111.018039 101.020551 93.798173 98.775883 NaN
2007-03-05 NaN 110.678064 102.373010 119.820433 96.286470 NaN NaN 66.435731 84.317324 109.884930 ... 92.872418 95.145954 NaN NaN 118.949220 109.982101 96.851455 93.131625 96.419990 NaN
2007-03-06 NaN 113.241744 103.077551 121.036348 97.869435 NaN NaN 66.435731 86.384151 116.022114 ... 96.047004 98.194020 NaN NaN 124.190248 113.496354 97.932114 92.124597 96.688038 NaN
2007-03-07 NaN 115.325215 104.825449 125.590204 96.570797 NaN NaN 75.089879 89.062442 114.321434 ... 97.193981 98.523034 NaN NaN 126.396089 113.929707 98.550762 93.819716 100.431280 NaN
2007-03-08 NaN 115.733312 104.482023 126.504941 96.044474 NaN NaN 75.089879 87.726679 112.591330 ... 96.253842 97.727078 NaN NaN 124.347969 112.203644 99.081886 96.153128 101.462312 NaN
2007-03-09 NaN 116.139751 104.826633 126.202997 97.631800 NaN NaN 72.435614 87.339507 113.647668 ... 97.035264 99.755389 NaN NaN 126.135390 112.276800 98.609388 97.130634 100.951914 NaN
2007-03-12 NaN 114.520119 104.483207 128.324239 99.715165 NaN NaN 70.615737 86.562993 116.086693 ... 97.921937 100.171527 NaN NaN 127.665016 114.945700 98.720985 100.033811 102.234024 NaN
2007-03-13 NaN 115.343500 104.483207 127.433933 99.204953 NaN NaN 72.469347 85.323377 114.386012 ... 98.004106 99.940822 NaN NaN 128.731044 114.304950 99.279349 97.526427 99.449144 NaN
2007-03-14 NaN 114.160851 104.483207 126.236397 99.204953 NaN NaN 68.833831 83.011528 114.386012 ... 96.961798 96.849271 NaN NaN 125.093115 112.871225 97.697196 94.310638 95.803376 NaN
2007-03-15 NaN 114.160851 104.483207 128.660498 96.640812 NaN NaN 70.717969 84.566796 116.116116 ... 98.486626 98.754348 NaN NaN 126.679176 114.544043 100.066062 96.636288 97.425011 NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2016-12-19 255.368761 152.974635 232.122172 289.889038 104.824888 219.315226 79.802766 484.605437 206.111816 310.656442 ... 214.975401 191.510032 NaN 292.865203 170.335966 176.580045 185.396046 187.312485 222.443063 141.037669
2016-12-20 254.858556 155.162135 235.261220 290.469309 106.865768 219.936344 79.802766 484.107924 207.941943 311.439732 ... 216.099266 192.507815 NaN 292.489263 168.784776 178.344244 184.881576 186.377906 222.782046 141.214660
2016-12-21 261.012403 154.550514 236.565707 291.238540 106.532654 220.759389 79.802766 489.107924 208.310607 312.476002 ... 215.579048 193.715279 NaN 295.508131 170.675533 178.217394 185.204782 185.906208 225.484748 141.037982
2016-12-22 258.113852 155.473591 236.136333 292.574418 106.532654 220.759389 80.711857 487.679353 209.091139 311.963181 ... 216.387225 193.823739 NaN 292.944029 171.294089 179.741526 186.364576 191.593411 225.155801 141.037982
2016-12-23 256.372558 153.949201 236.998349 292.009446 106.198081 221.371634 77.108254 489.128628 210.138975 311.447717 ... 215.609107 193.607055 NaN 291.440269 171.294089 179.199408 187.256296 192.041842 222.845570 142.453911
2016-12-26 256.372558 153.949201 236.998349 292.009446 106.198081 221.371634 77.108254 489.128628 210.138975 311.447717 ... 215.609107 193.607055 NaN 291.440269 171.294089 179.199408 187.256296 192.041842 222.845570 142.453911
2016-12-27 256.372558 153.949201 236.998349 292.009446 106.198081 221.371634 77.108254 489.128628 210.138975 311.447717 ... 215.609107 193.607055 NaN 291.440269 171.294089 179.199408 187.256296 192.041842 222.845570 142.453911
2016-12-28 257.638381 155.497188 238.280539 293.145810 106.869127 224.414231 75.862148 490.081009 208.876577 313.261189 ... 216.678498 194.149943 NaN 293.348666 171.703925 181.128129 187.224730 196.952556 226.223948 142.628431
2016-12-29 259.138381 155.802066 238.706071 294.082139 106.869127 225.004782 74.915775 490.552707 209.698494 313.770094 ... 217.313344 194.365925 NaN 292.225071 172.214130 181.868565 187.445760 199.080216 228.838327 141.234703
2016-12-30 259.630992 158.841580 237.858613 294.824254 107.536043 224.222003 76.826603 489.613740 209.743784 313.770094 ... 215.771288 195.443512 NaN 291.088707 170.894333 180.276078 185.618412 199.913549 226.609028 141.058024
2017-01-02 259.630992 158.841580 237.858613 294.824254 107.536043 224.222003 76.826603 489.613740 209.743784 313.770094 ... 215.771288 195.443512 NaN 291.088707 170.894333 180.276078 185.618412 199.913549 226.609028 141.058024
2017-01-03 258.650600 159.726536 237.858613 295.376741 108.860357 233.097743 75.576603 491.509475 211.645097 315.035917 ... 217.123922 195.336902 NaN 297.218975 173.877872 181.396410 186.870017 201.979665 228.237693 142.827936
2017-01-04 257.660501 159.726536 233.585109 294.277839 106.899513 231.286148 75.576603 489.649010 210.801028 313.785917 ... 216.491752 195.336902 NaN 296.135943 172.878871 181.314342 186.077624 204.408815 231.122308 141.958371
2017-01-05 257.410501 157.972150 233.585109 294.277839 107.566429 233.315669 73.677869 488.701143 211.025042 313.532753 ... 216.444626 195.870520 NaN 297.960760 175.300667 181.026868 186.556857 203.223044 232.679940 143.186441
2017-01-06 255.656115 158.865007 233.138680 293.907469 108.559494 235.847314 74.000450 487.744205 210.309798 313.025139 ... 216.185315 196.401305 NaN 297.243914 175.793278 180.656192 186.588654 204.023044 229.612456 144.052992
2017-01-09 258.207135 159.159992 236.726124 293.721596 108.559494 235.670947 73.678907 486.294929 211.075219 312.514934 ... 215.783518 196.718095 NaN 295.438860 176.871709 181.482980 187.923682 202.832568 229.296000 143.881171
2017-01-10 257.709623 157.689404 236.293224 292.418057 108.231840 235.670947 73.678907 484.089047 210.092199 312.258524 ... 216.115744 197.033885 NaN 296.541801 174.931845 180.744973 187.798212 202.430961 229.613460 143.192703
2017-01-11 266.709623 158.584926 234.988876 292.984095 107.902770 233.197449 72.388584 483.086541 210.001946 312.515594 ... 215.855574 196.194430 NaN 299.087256 175.030757 181.529773 187.358513 202.027735 236.891941 142.846082
2017-01-12 263.957329 156.809778 234.988876 293.359330 106.582824 232.472812 72.061787 482.073883 209.279272 312.515594 ... 214.741038 194.607129 NaN 300.860306 176.117713 180.996986 188.336431 201.218019 233.647104 142.498256
2017-01-13 263.957329 153.496525 234.107819 292.798582 105.244878 236.122447 72.061787 482.585391 209.506752 312.515594 ... 214.669095 194.069494 NaN 305.389922 174.651438 181.450220 188.086509 201.218019 214.439786 142.498256
2017-01-16 266.787518 155.054158 233.218930 293.362492 106.261858 238.235123 70.422442 483.348750 210.187641 313.284824 ... 215.029066 194.393819 NaN 303.056589 175.147469 181.819375 187.929917 200.401692 217.836013 141.451136
2017-01-17 268.622380 153.213667 232.322069 291.306417 105.138263 236.510985 72.089109 481.833599 210.142556 313.030371 ... 214.311706 192.885198 NaN 301.008807 173.666719 181.615043 188.306328 200.813215 218.200976 140.216568
2017-01-18 266.370128 151.651167 230.964603 291.878936 104.089311 236.686423 71.105502 481.577188 210.458298 312.775269 ... 214.504385 192.447561 NaN 301.008807 173.566519 181.123643 189.493828 196.305018 216.019158 139.323711
2017-01-19 265.448469 151.016246 230.505887 290.930169 103.382598 236.511292 70.443251 480.805980 211.852183 313.031024 ... 214.264000 191.238770 NaN 302.750968 171.761103 181.535166 188.567331 195.446649 214.903917 140.044431
2017-01-20 263.588004 152.294202 229.123399 289.972315 103.026726 235.283222 70.443251 479.769711 212.827792 313.286126 ... 214.480867 190.348892 NaN 300.353707 170.024637 181.453198 188.162094 198.476952 212.648277 138.792195
2017-01-23 261.218336 152.925116 227.254240 289.392044 102.669583 233.862263 69.443251 481.340391 210.895425 313.031673 ... 212.990124 190.573359 NaN 298.248444 168.881186 182.355577 188.850670 195.115608 205.340585 134.263210
2017-01-24 260.247462 152.611637 226.301859 289.781149 104.820121 234.222623 69.443251 479.020804 211.253688 313.286775 ... 213.551511 191.693180 NaN 303.266365 171.404845 183.168586 188.197888 196.854738 205.755523 133.883703
2017-01-25 263.188638 153.240568 225.821089 289.781149 103.767489 231.888691 69.106550 476.646134 210.495098 313.032322 ... 212.337919 190.364276 NaN 303.948959 173.866383 182.563747 188.573357 195.572687 211.953870 134.645608
2017-01-26 263.188638 153.240568 225.821089 289.781149 103.767489 231.888691 69.106550 476.646134 210.495098 313.032322 ... 212.337919 190.364276 NaN 303.948959 173.866383 182.563747 188.573357 195.572687 211.953870 134.645608
2017-01-27 263.664829 152.928068 227.270365 290.556343 105.185929 235.748985 69.106550 474.754242 212.383587 315.328240 ... 213.369860 190.925444 NaN 301.915061 175.568085 184.632712 189.290314 194.273985 210.397450 132.944285

2602 rows × 299 columns


In [31]:
# lets review the returns profile of each stock, grouping by sector
for sector in sectors:
    tickers = index[index['sector'] == sector]['yahoo_ticker']
    
    ax = return_index[tickers].plot(
            figsize=(12,4)
            ,linewidth=0.3
            ,legend=False
            ,title=sector)
    ax



In [34]:
return_index = return_index.ix[:, return_index.lt(0).any()]

# lets review the returns profile of each stock, grouping by sector
for sector in sectors:
    tickers = index[index['sector'] == sector]['yahoo_ticker']
    
    ax = return_index[tickers].plot(
            figsize=(12,4)
            ,linewidth=0.3
            ,legend=False
            ,title=sector)
    ax


---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-34-0189a484136d> in <module>()
      5     tickers = index[index['sector'] == sector]['yahoo_ticker']
      6 
----> 7     ax = return_index[tickers].plot(
      8             figsize=(12,4)
      9             ,linewidth=0.3

/home/adrian/miniconda3/envs/sandpit/lib/python3.5/site-packages/pandas/core/frame.py in __getitem__(self, key)
   2049         if isinstance(key, (Series, np.ndarray, Index, list)):
   2050             # either boolean or fancy integer index
-> 2051             return self._getitem_array(key)
   2052         elif isinstance(key, DataFrame):
   2053             return self._getitem_frame(key)

/home/adrian/miniconda3/envs/sandpit/lib/python3.5/site-packages/pandas/core/frame.py in _getitem_array(self, key)
   2093             return self.take(indexer, axis=0, convert=False)
   2094         else:
-> 2095             indexer = self.ix._convert_to_indexer(key, axis=1)
   2096             return self.take(indexer, axis=1, convert=True)
   2097 

/home/adrian/miniconda3/envs/sandpit/lib/python3.5/site-packages/pandas/core/indexing.py in _convert_to_indexer(self, obj, axis, is_setter)
   1227                 mask = check == -1
   1228                 if mask.any():
-> 1229                     raise KeyError('%s not in index' % objarr[mask])
   1230 
   1231                 return _values_from_object(indexer)

KeyError: "['A2M.AX' 'AAC.AX' 'AHY.AX' 'BAL.AX' 'BGA.AX' 'BKL.AX' 'BWX.AX' 'CCL.AX'\n 'CGC.AX' 'FNP.AX' 'FSF.AX' 'GNC.AX' 'MGC.AX' 'MTS.AX' 'RIC.AX' 'TGR.AX'\n 'TWE.AX' 'WBA.AX' 'WES.AX' 'WOW.AX'] not in index"