In [84]:
# Import Necessary Libraries
import numpy as np
import scipy.io
import matplotlib
from matplotlib import *
from matplotlib import pyplot as plt
import itertools
from mpl_toolkits.axes_grid1 import make_axes_locatable
from sklearn.decomposition import PCA
import scipy.stats as stats
from scipy.spatial import distance as Distance
# pretty charting
import seaborn as sns
sns.set_palette('muted')
sns.set_style('darkgrid')
%matplotlib inline
In [15]:
######## Load in EVENTS struct to find correct events
eventsDir = '../NIH034/behavioral/paRemap/' + 'events.mat'
events = scipy.io.loadmat(eventsDir)
events = events['events']
# print number of incorrect events and which words they belonged to
incorrectIndices = events['isCorrect'] == 0
incorrectEvents = events[incorrectIndices]
incorrectWords = []
for i in range(0, len(incorrectEvents)):
incorrectWords.append(incorrectEvents['probeWord'][i][0])
print "There were ",len(incorrectEvents), " number of incorrect events."
print "The list of incorrect probe words: \n", wordList
#
# get only correct events
correctIndices = events['isCorrect'] == 1
events = events[correctIndices]
print "\nThis is the length of the events struct with only correct responses: ", len(events)
In [20]:
#### Extract wordpairs data into a dictionary for a subject/session/block
#### dictionary{wordpair:{channels}}
def extractSubjSessionBlockData(subj, session, block):
# file directory for a subj/session/block
filedir = '../condensed_data_' + subj + '/blocks/' + session + '/' + block
wordpairs = os.listdir(filedir)
# initialize data dictionary with meta data
data_dict = {}
data_dict['meta'] = {'subject': subj,
'session': session,
'block': block}
data_dict['data'] = {}
for wordpair in wordpairs: # loop thru all wordpairs
wordpair_dir = filedir + '/' + wordpair
all_channel_mats = os.listdir(wordpair_dir)
data_dict['data'][wordpair] = {}
for channel in all_channel_mats: # loop thru all channels
chan_file = wordpair_dir + '/' + channel
## 00: load in data
data = scipy.io.loadmat(chan_file)
data = data['data']
## 01: get the time point for probeword on
timeZero = data['timeZero'][0][0][0]
## 02: get the time point of vocalization
vocalization = data['vocalization'][0][0][0]
## 03: Get Power Matrix
power_matrix = data['powerMatZ'][0][0]
chan = channel.split('_')[0]
# convert channel data into a json dict
data_dict['data'][wordpair][chan] = {'timeZero': timeZero,
'timeVocalization':vocalization,
'powerMat': power_matrix}
print "The size of power matrices are: ", power_matrix.shape
return data_dict
def isReverse(pair1, pair2):
pair1split = pair1.split('_')
pair2split = pair2.split('_')
if pair1split[0] == pair2split[1] and pair1split[1] == pair2split[0]:
return True
else:
return False
# Compute all pairwise distances between first_mat to second_mat
def computePairDistances(first_mat, second_mat):
distance_list = []
for idx in range(0, first_mat.shape[0]):
distance_list.append([distances(x, first_mat[idx,:]) for x in second_mat])
distance_list = 1.0 - np.ndarray.flatten(np.array(distance_list))
return distance_list
distances = Distance.cosine # define distance metric to use
def computeWithinDistances(mat):
distance_list = np.array(())
distance_list = []
for idx in range(0, mat.shape[0]):
for x in mat[idx+1:,:]:
dist = distances(x,mat[idx,:])
to_append = np.array(dist)
distance_list.append(to_append)
distance_list = 1.0 - np.ndarray.flatten(np.array(distance_list))
return distance_list
In [21]:
######## Get list of files (.mat) we want to work with ########
subj = 'NIH034' # change the directories if you want
filedir = '../condensed_data_' + subj + '/blocks/'
sessions = os.listdir(filedir)
sessions = sessions[2:] # change which sessions we want
print "Analyzing subject: ", subj
print "The sessions: ", sessions
# loop through each session
for idx, session in enumerate(sessions):
# the session directory
sessiondir = filedir + sessions[idx]
# get all blocks for this session
blocks = os.listdir(sessiondir)
print "The blocks are: \n", blocks, ' \n'
if len(blocks) != 6: # error check on the directories
print blocks
print("Error in the # of blocks. There should be 5.")
break
# loop through each block one at a time, analyze
for i in range(0, 1):
block = blocks[i]
block_dir = sessiondir + '/' + block
#
print 'Subject: ', subj
print 'Session: ', session
print 'Block: ', block
block_data = extractSubjSessionBlockData(subj, session, block)
print block_data.keys()
break
break
In [26]:
print "1 second is index ", 45+(1.0/(50.0/1000)) , " in the data structure we have."
print "2 seconds is index ", 45+(2.0/(50.0/1000))
print "3 seconds is index ", 45+(3.0/(50.0/1000))
print "timeZero of probeWord on is: ", 45
In [56]:
######## Get list of files (.mat) we want to work with ########
subj = 'NIH034'
filedir = '../condensed_data_NIH034/blocks/'
sessions = os.listdir(filedir)
sessions = sessions[2:]
session_pval_dict = {}
# loop through each session
for session in sessions:
print "Analyzing session ", session, " WITHIN BLOCKS."
sessiondir = filedir + session
# get all blocks for this session
blocks = os.listdir(sessiondir)
if len(blocks) != 6: # error check on the directories
print blocks
print("Error in the # of blocks. There should be 5.")
break
# initialize p-value matrices to visualize heat maps of significant channels
session_pval_diff_mat = np.array(())
session_pval_same_mat = np.array(())
session_pval_reverse_mat = np.array(())
# loop through each block one at a time, analyze
for i in range(0, 6):
print "Analyzing block ", blocks[i]
block = blocks[i]
block_dir = sessiondir + '/' + block
# in each block, get list of word pairs from first and second block
wordpairs = os.listdir(block_dir)
# within-groups analysis only has: SAME, REVERSE, DIFFERENT
diff_word_group = []
reverse_word_group = []
same_word_group = []
print "These are the wordpairs in this block: ", wordpairs
################# 01: Create WordPair Groups #################
# create same group pairs
for idx, pair in enumerate(wordpairs):
same_word_group.append([pair, pair])
# create reverse, and different groups
for idx, pairs in enumerate(itertools.combinations(wordpairs,2)):
if isReverse(pairs[0], pairs[1]):
reverse_word_group.append([pairs[0], pairs[1]])
else:
diff_word_group.append([pairs[0], pairs[1]])
break
print "\nGot same_word_group, reverse_word_group and diff_word_group for session: ", session
print "\n",same_word_group
print "\n",reverse_word_group
print "\n",diff_word_group
break
In [82]:
print "Meta data: ", block_data['meta'] # print meta data for this dict
### FOR CERTAIN SESSION BLOCK
# loop through each wordpair
bufferblock_data = block_data
wordpairs = block_data['data'].keys()
print "Data available per channel: ", block_data['data'][wordpairs[0]]['1'].keys()
for wordpair in wordpairs:
wordpairdata = block_data['data'][wordpair]
for chan in wordpairdata.keys():
timeVocalization = wordpairdata[chan]['timeVocalization']
timeZero = wordpairdata[chan]['timeZero']
powerMat = wordpairdata[chan]['powerMat']
onesec_indices = np.where(timeVocalization <= 65)
onetwosec_indices = np.where((timeVocalization <= 85) & (timeVocalization > 65))[0]
twothreesec_indices = np.where((timeVocalization <= 105) & (timeVocalization > 85))[0]
# reformat data to get the indices we want
block_data['data'][wordpair][chan]['timeVocalization'] = timeVocalization[onetwosec_indices]
block_data['data'][wordpair][chan]['powerMat'] = powerMat[onetwosec_indices,:,:]
# print twothreesec_indices.shape
# print onetwosec_indices.shape
# print timeVocalization.shape
# print timeZero.shape
# print powerMat.shape
# break
# break
def getDistances(same_word_group, reverse_word_group, diff_word_group, block_data, chan):
################# 02a: Same Words Cosine Distnace #################
# extract channel data for same word group
same_word_dict = {}
same_word_distances = []
for same_words in same_word_group:
same_word_data = [] # array to store all the feature freq. vectors for a specific word
# extract data to process - average across time
same_word_key = same_words[0]
probeOnTime = block_data['data'][same_word_key][str(chan)]['timeZero']
vocalizationTime = block_data['data'][same_word_key][str(chan)]['timeVocalization']
powerMat = block_data['data'][same_word_key][str(chan)]['powerMat']
for i in range(0, len(vocalizationTime)):
# either go from timezero -> vocalization, or some other timewindow
same_word_data.append(np.ndarray.flatten(np.mean(powerMat[i,:,probeOnTime:vocalizationTime[i]],axis=1)))
same_word_data = np.array(same_word_data)
# do a pairwise comparison of all events in this word pair
same_word_data = computeWithinDistances(same_word_data)
same_word_dict[same_word_key] = same_word_data
for key in same_word_dict.keys():
same_word_distances.append(same_word_dict[key])
same_word_distances = np.array(same_word_distances)
################# 02b: Reverse Words Cosine Distnace #################
# extract channel data for same word group
reverse_word_dict = {}
reverse_word_distances = []
for reverse_words in reverse_word_group:
reverse_word_data = {}
for wdx, word in enumerate(reverse_words): # get the first and second word pair
reverse_word_databuffer = []
# extract wordKey and data from MAIN block dictinoary
reverse_word_key = reverse_words[wdx]
probeOnTime = block_data['data'][reverse_word_key][str(chan)]['timeZero']
vocalizationTime = block_data['data'][reverse_word_key][str(chan)]['timeVocalization']
powerMat = block_data['data'][reverse_word_key][str(chan)]['powerMat']
# average across time and append a frequency feature vector for every event in this group
for i in range(0, len(vocalizationTime)):
# either go from timezero -> vocalization, or some other timewindow
reverse_word_databuffer.append(np.ndarray.flatten(np.mean(powerMat[i,:,probeOnTime:vocalizationTime[i]],axis=1)))
reverse_word_data[str(wdx)] = np.array(reverse_word_databuffer)
# do a pairwise comparison of all events in this word pair
reverse_word_dict['vs'.join(reverse_words)] = computePairDistances(reverse_word_data['0'], reverse_word_data['1'])
for key in reverse_word_dict.keys():
reverse_word_distances.append(reverse_word_dict[key])
reverse_word_distances = np.array(reverse_word_distances)
################# 02c: Different Words Cosine Distnace #################
# extract channel data for same word group
diff_word_dict = {}
diff_word_distances = []
for diff_words in diff_word_group:
diff_word_data = {}
# extract data to process - average across time
for wdx, word in enumerate(diff_words): # get the first and second word pair
diff_word_databuffer = []
# extract wordKey and data from MAIN block dictinoary
diff_word_key = diff_words[wdx]
probeOnTime = block_data['data'][diff_word_key][str(chan)]['timeZero']
vocalizationTime = block_data['data'][diff_word_key][str(chan)]['timeVocalization']
powerMat = block_data['data'][diff_word_key][str(chan)]['powerMat']
# average across time and append a frequency feature vector for every event in this group
for i in range(0, len(vocalizationTime)):
# either go from timezero -> vocalization, or some other timewindow
diff_word_databuffer.append(np.ndarray.flatten(np.mean(powerMat[i,:,probeOnTime:vocalizationTime[i]],axis=1)))
diff_word_data[str(wdx)] = np.array(diff_word_databuffer)
# do a pairwise comparison of all events in this word pair
diff_word_dict['vs'.join(diff_words)] = computePairDistances(diff_word_data['0'], diff_word_data['1'])
# put all word distances into 1 list
for key in diff_word_dict.keys():
diff_word_distances.append(diff_word_dict[key])
diff_word_distances = np.array(diff_word_distances)
# print same_word_dict.keys()
# print reverse_word_dict.keys()
# print diff_word_dict.keys()
return same_word_distances, reverse_word_distances, diff_word_distances
def flattenArrayDistances(word_distances):
buff_distances = np.array(())
for i in range(0, len(word_distances)):
buff_distances = np.append(buff_distances, word_distances[i], axis=0)
return buff_distances
In [83]:
# extract entire data set for this session/block
# block_data = extractSubjSessionBlockData(subj, session, block)
# block data gotten from above cell filtered by response times -> 1-2 seconds
################# 02: Analyze Significant Differences Between Same/Reverse/Different #################
## 01: For each word group, create a word dictionary
## 02: Compute the cosine similarity measures between the word pairs
## 03: Put it into an np array
channels = np.arange(1, 97, 1)
for jdx, chan in enumerate(channels):
same_word_distances, reverse_word_distances, diff_word_distances = getDistances(same_word_group, reverse_word_group, diff_word_group, block_data, chan)
same_word_distances = flattenArrayDistances(same_word_distances)
reverse_word_distances = flattenArrayDistances(reverse_word_distances)
diff_word_distances = flattenArrayDistances(diff_word_distances)
if jdx == 0:
print same_word_distances.shape
print reverse_word_distances.shape
print diff_word_distances.shape
## plotting cosine similarity
fig = plt.figure()
axes = plt.gca()
x_range = [-1, 1]
axes.hist(np.ndarray.flatten(same_word_distances), label='same', alpha=0.6)
axes.hist(np.ndarray.flatten(reverse_word_distances), label='reverse', alpha=0.4)
axes.hist(np.ndarray.flatten(diff_word_distances), label='diff', alpha=0.3)
axes.set_title('channel ' + str(chan))
plt.legend()
# break # channel loop
In [78]:
print block_data['meta']
print block_data['data'].keys()
print len([same_word_distances[i] for i in range(0,len(same_word_distances))])
print len(np.ndarray.flatten(same_word_distances))
test = flattenArrayDistances(same_word_distances)
print len(test)
In [85]:
######## Load in EVENTS struct to find correct events
eventsDir = '../NIH039/behavioral/paRemap/' + 'events.mat'
events = scipy.io.loadmat(eventsDir)
events = events['events']
# print number of incorrect events and which words they belonged to
incorrectIndices = events['isCorrect'] == 0
incorrectEvents = events[incorrectIndices]
incorrectWords = []
for i in range(0, len(incorrectEvents)):
incorrectWords.append(incorrectEvents['probeWord'][i][0])
print "There were ",len(incorrectEvents), " number of incorrect events."
print "The list of incorrect probe words: \n", wordList
#
# get only correct events
correctIndices = events['isCorrect'] == 1
events = events[correctIndices]
print "\nThis is the length of the events struct with only correct responses: ", len(events)
In [110]:
#### Extract wordpairs data into a dictionary for a subject/session/block
#### dictionary{wordpair:{channels}}
def extractSubjSessionBlockData(subj, session, block):
# file directory for a subj/session/block
filedir = '../condensed_data_' + subj + '/sessions/' + session + '/' + block
wordpairs = os.listdir(filedir)
# initialize data dictionary with meta data
data_dict = {}
data_dict['meta'] = {'subject': subj,
'session': session,
'block': block}
data_dict['data'] = {}
for wordpair in wordpairs: # loop thru all wordpairs
wordpair_dir = filedir + '/' + wordpair
all_channel_mats = os.listdir(wordpair_dir)
data_dict['data'][wordpair] = {}
for channel in all_channel_mats: # loop thru all channels
chan_file = wordpair_dir + '/' + channel
## 00: load in data
data = scipy.io.loadmat(chan_file)
data = data['data']
## 01: get the time point for probeword on
timeZero = data['timeZero'][0][0][0]
## 02: get the time point of vocalization
vocalization = data['vocalization'][0][0][0]
## 03: Get Power Matrix
power_matrix = data['powerMatZ'][0][0]
chan = channel.split('_')[0]
# convert channel data into a json dict
data_dict['data'][wordpair][chan] = {'timeZero': timeZero,
'timeVocalization':vocalization,
'powerMat': power_matrix}
data_dict['meta']['description'] = data['description'][0][0][0]
# print "The size of power matrices are: ", power_matrix.shape
return data_dict
def isReverse(pair1, pair2):
pair1split = pair1.split('_')
pair2split = pair2.split('_')
if pair1split[0] == pair2split[1] and pair1split[1] == pair2split[0]:
return True
else:
return False
# Compute all pairwise distances between first_mat to second_mat
def computePairDistances(first_mat, second_mat):
distance_list = []
for idx in range(0, first_mat.shape[0]):
distance_list.append([distances(x, first_mat[idx,:]) for x in second_mat])
distance_list = 1.0 - np.ndarray.flatten(np.array(distance_list))
return distance_list
distances = Distance.euclidean # define distance metric to use
def computeWithinDistances(mat):
distance_list = np.array(())
distance_list = []
for idx in range(0, mat.shape[0]):
for x in mat[idx+1:,:]:
dist = distances(x,mat[idx,:])
to_append = np.array(dist)
distance_list.append(to_append)
distance_list = 1.0 - np.ndarray.flatten(np.array(distance_list))
return distance_list
In [111]:
def getDistances(same_word_group, reverse_word_group, diff_word_group, block_data, chan):
################# 02a: Same Words Cosine Distnace #################
# extract channel data for same word group
same_word_dict = {}
same_word_distances = []
for same_words in same_word_group:
same_word_data = [] # array to store all the feature freq. vectors for a specific word
# extract data to process - average across time
same_word_key = same_words[0]
probeOnTime = block_data['data'][same_word_key][str(chan)]['timeZero']
vocalizationTime = block_data['data'][same_word_key][str(chan)]['timeVocalization']
powerMat = block_data['data'][same_word_key][str(chan)]['powerMat']
for i in range(0, len(vocalizationTime)):
# either go from timezero -> vocalization, or some other timewindow
same_word_data.append(np.ndarray.flatten(np.mean(powerMat[i,:,probeOnTime:vocalizationTime[i]],axis=1)))
same_word_data = np.array(same_word_data)
# do a pairwise comparison of all events in this word pair
same_word_data = computeWithinDistances(same_word_data)
same_word_dict[same_word_key] = same_word_data
for key in same_word_dict.keys():
same_word_distances.append(same_word_dict[key])
same_word_distances = np.array(same_word_distances)
################# 02b: Reverse Words Cosine Distnace #################
# extract channel data for same word group
reverse_word_dict = {}
reverse_word_distances = []
for reverse_words in reverse_word_group:
reverse_word_data = {}
for wdx, word in enumerate(reverse_words): # get the first and second word pair
reverse_word_databuffer = []
# extract wordKey and data from MAIN block dictinoary
reverse_word_key = reverse_words[wdx]
probeOnTime = block_data['data'][reverse_word_key][str(chan)]['timeZero']
vocalizationTime = block_data['data'][reverse_word_key][str(chan)]['timeVocalization']
powerMat = block_data['data'][reverse_word_key][str(chan)]['powerMat']
# average across time and append a frequency feature vector for every event in this group
for i in range(0, len(vocalizationTime)):
# either go from timezero -> vocalization, or some other timewindow
reverse_word_databuffer.append(np.ndarray.flatten(np.mean(powerMat[i,:,probeOnTime:vocalizationTime[i]],axis=1)))
reverse_word_data[str(wdx)] = np.array(reverse_word_databuffer)
# do a pairwise comparison of all events in this word pair
reverse_word_dict['vs'.join(reverse_words)] = computePairDistances(reverse_word_data['0'], reverse_word_data['1'])
for key in reverse_word_dict.keys():
reverse_word_distances.append(reverse_word_dict[key])
reverse_word_distances = np.array(reverse_word_distances)
################# 02c: Different Words Cosine Distnace #################
# extract channel data for same word group
diff_word_dict = {}
diff_word_distances = []
for diff_words in diff_word_group:
diff_word_data = {}
# extract data to process - average across time
for wdx, word in enumerate(diff_words): # get the first and second word pair
diff_word_databuffer = []
# extract wordKey and data from MAIN block dictinoary
diff_word_key = diff_words[wdx]
probeOnTime = block_data['data'][diff_word_key][str(chan)]['timeZero']
vocalizationTime = block_data['data'][diff_word_key][str(chan)]['timeVocalization']
powerMat = block_data['data'][diff_word_key][str(chan)]['powerMat']
# average across time and append a frequency feature vector for every event in this group
for i in range(0, len(vocalizationTime)):
# either go from timezero -> vocalization, or some other timewindow
diff_word_databuffer.append(np.ndarray.flatten(np.mean(powerMat[i,:,probeOnTime:vocalizationTime[i]],axis=1)))
diff_word_data[str(wdx)] = np.array(diff_word_databuffer)
# do a pairwise comparison of all events in this word pair
diff_word_dict['vs'.join(diff_words)] = computePairDistances(diff_word_data['0'], diff_word_data['1'])
# put all word distances into 1 list
for key in diff_word_dict.keys():
diff_word_distances.append(diff_word_dict[key])
diff_word_distances = np.array(diff_word_distances)
# print same_word_dict.keys()
# print reverse_word_dict.keys()
# print diff_word_dict.keys()
return same_word_distances, reverse_word_distances, diff_word_distances
def flattenArrayDistances(word_distances):
buff_distances = np.array(())
for i in range(0, len(word_distances)):
buff_distances = np.append(buff_distances, word_distances[i], axis=0)
return buff_distances
In [112]:
######## Get list of files (.mat) we want to work with ########
subj = 'NIH039'
filedir = '../condensed_data_NIH039/sessions/'
sessions = os.listdir(filedir)
# sessions = sessions[2:]
# loop through each session
for session in sessions:
print "Analyzing session ", session, " WITHIN BLOCKS."
sessiondir = filedir + session
# get all blocks for this session
blocks = os.listdir(sessiondir)
if len(blocks) != 6: # error check on the directories
print blocks
print("Error in the # of blocks. There should be 5.")
break
# loop through each block one at a time, analyze
for i in range(0, 6):
print "Analyzing block ", blocks[i]
block = blocks[i]
block_dir = sessiondir + '/' + block
#
print 'Subject: ', subj
print 'Session: ', session
print 'Block: ', block
block_data = extractSubjSessionBlockData(subj, session, block)
print block_data['data'].keys()
# in each block, get list of word pairs from first and second block
wordpairs = os.listdir(block_dir)
# within-groups analysis only has: SAME, REVERSE, DIFFERENT
diff_word_group = []
reverse_word_group = []
same_word_group = []
print "These are the wordpairs in this block: ", wordpairs
################# 01: Create WordPair Groups #################
# create same group pairs
for idx, pair in enumerate(wordpairs):
same_word_group.append([pair, pair])
# create reverse, and different groups
for idx, pairs in enumerate(itertools.combinations(wordpairs,2)):
if isReverse(pairs[0], pairs[1]):
reverse_word_group.append([pairs[0], pairs[1]])
else:
diff_word_group.append([pairs[0], pairs[1]])
break
print "\nGot same_word_group, reverse_word_group and diff_word_group for session: ", session
print "\n",same_word_group
print "\n",reverse_word_group
print "\n",diff_word_group
break
In [113]:
print "Meta data: ", block_data['meta'] # print meta data for this dict
### FOR CERTAIN SESSION BLOCK
# loop through each wordpair
bufferblock_data = block_data
wordpairs = block_data['data'].keys()
print "Data available per channel: ", block_data['data'][wordpairs[0]]['1'].keys()
for wordpair in wordpairs:
wordpairdata = block_data['data'][wordpair]
for chan in wordpairdata.keys():
timeVocalization = wordpairdata[chan]['timeVocalization']
timeZero = wordpairdata[chan]['timeZero']
powerMat = wordpairdata[chan]['powerMat']
onesec_indices = np.where(timeVocalization <= 40)
onetwosec_indices = np.where((timeVocalization <= 60) & (timeVocalization > 40))[0]
twothreesec_indices = np.where((timeVocalization <= 80) & (timeVocalization > 60))[0]
# reformat data to get the indices we want
block_data['data'][wordpair][chan]['timeVocalization'] = timeVocalization[onetwosec_indices]
block_data['data'][wordpair][chan]['powerMat'] = powerMat[onetwosec_indices,:,:]
print timeZero
In [114]:
################# 02: Analyze Significant Differences Between Same/Reverse/Different #################
## 01: For each word group, create a word dictionary
## 02: Compute the cosine similarity measures between the word pairs
## 03: Put it into an np array
channels = np.arange(1, 73, 1)
for jdx, chan in enumerate(channels):
same_word_distances, reverse_word_distances, diff_word_distances = getDistances(same_word_group, reverse_word_group, diff_word_group, block_data, chan)
same_word_distances = flattenArrayDistances(same_word_distances)
reverse_word_distances = flattenArrayDistances(reverse_word_distances)
diff_word_distances = flattenArrayDistances(diff_word_distances)
if jdx == 0:
print same_word_distances.shape
print reverse_word_distances.shape
print diff_word_distances.shape
## plotting cosine similarity
fig = plt.figure()
axes = plt.gca()
x_range = [-1, 1]
axes.hist(np.ndarray.flatten(same_word_distances), label='same', alpha=0.6)
axes.hist(np.ndarray.flatten(reverse_word_distances), label='reverse', alpha=0.4)
axes.hist(np.ndarray.flatten(diff_word_distances), label='diff', alpha=0.3)
axes.set_title('channel ' + str(chan))
plt.legend()
# break
In [ ]: