In [16]:
f2 = open('N-NM1CGrefI.dat', 'r');
lines = f2.readlines();
f2.close();
g3 = []
for line in lines:
    p = line.split()
    g3.append([float(p[0]),float(p[1])]) 
f2 = open('N-NM1CGI.dat', 'r');
lines = f2.readlines();
f2.close();
g2 = []
for line in lines:
    p = line.split()
    if len(p) > 1:
        g2.append([float(p[0]),float(p[1])]) 
f2 = open('N-NAAI.dat', 'r');
lines = f2.readlines();
f2.close();
g1 = []
for line in lines:
    p = line.split()
    if len(p) > 1:
        g1.append([float(p[0]),float(p[1])])

In [3]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [17]:
gn1 = np.array(g1)
gn2 = np.array(g2)
gn3 = np.array(g3)

In [48]:
plt.figure(figsize=(8,6), dpi=80)
plt.axis([0, 15, 0,6])
plt.xlabel(r'$r,\  (\AA)$',fontsize=20)
plt.ylabel(r'$\rho(r),\  RDF$',fontsize=20)
plt.plot(10*gn1[:,0],gn1[:,1],'g--', label="All-Atom")
plt.plot(gn3[:,0],gn3[:,1],'r-', label="Reference CG")
plt.plot(10*gn2[:,0],gn2[:,1],'b-', label="Reproduction Test")
plt.legend(loc='upper right')
savefig("NNI.pdf", dpi=300)



In [46]:


In [ ]: