In [2]:
using Plots,ApproxFun,Interact,Reactive; gadfly();


INFO: Recompiling stale cache file /home/acarta/.julia/lib/v0.4/Plots.ji for module Plots.
LoadError: ArgumentError: ApproxFun not found in path
while loading In[2], in expression starting on line 1

 in require at loading.jl:233
 [inlined code] from /home/acarta/.julia/v0.4/Requires/src/require.jl:11
 in require at /home/acarta/.julia/v0.4/Requires/src/hook.jl:17

KdV with Neumann $$u_t + 6uu_x + u_{xxx}=0$$

Evaluate the first cell to start the plot, then the second cell to evolve the plot. Evaluating the second cell will continue evolving the solution. It may take two times before it works.


In [1]:
u0=Fun(x->2exp(-x^2),[-10.,10.])
d=domain(u0);D=Derivative(d)
g(y)=-6.y*y'
x=Signal(u0);map(y->plot(y;ylims=(-1.,3.)).o,x)


LoadError: UndefVarError: Fun not defined
while loading In[1], in expression starting on line 1

In [3]:
u0=BDF2([neumann(d);rdirichlet(d)],-D^3,g,zeros(3),u0,0.004,300,x,10E-7);