In [1]:
from ast import literal_eval
from pandas import DataFrame  # http://github.com/pydata/pandas
import re
import requests               # http://github.com/kennethreitz/requests
import subprocess
import sys

In [2]:
import matplotlib as plt
%matplotlib inline

In [3]:
from tools import word_freq

In [4]:
df1 = word_freq(['monocultural', 'monoracial']) 
df1.plot()


Out[4]:
<matplotlib.axes._subplots.AxesSubplot at 0x1088c2c18>

In [6]:
df2 = word_freq(['bicultural', 'biracial', 'biethnic', 'interracial'])
df2.plot()


Out[6]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f08085b6588>

In [7]:
df3 = word_freq(['mixed race', 'mixed ethnicity', 'other race', 'other ethnicity'])
df3.plot()


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f080852f748>

In [8]:
df4 = word_freq(['multicultural', 'multiracial', 'multiethnic', 'polyracial', 'polyethnic', 'polycultural'])
df4.plot()


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f0808501a58>

In [9]:
df5 = word_freq(['multiculturalism', 'polyculturalism', 'cultural pluralism'])
df5.plot()


Out[9]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f08085869e8>

In [ ]: