In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import glob
from os import path
import itertools
import requests
from io import StringIO
from pandas import DataFrame

In [3]:
%matplotlib inline

In [4]:
from tools import word_freq

In [5]:
data = word_freq(["African American", 'bicultural', 'biracial', 'biethnic', 'interracial'])

In [6]:
data.head()


Out[6]:
African_American bicultural biracial biethnic interracial
year
1800 0 2.330130e-09 0 0 0
1801 0 1.864104e-09 0 0 0
1802 0 1.553420e-09 0 0 0
1803 0 1.331503e-09 0 0 0
1804 0 1.331503e-09 0 0 0

In [7]:
data["combined"] = data["interracial"] + data["biethnic"]

In [10]:
data[["African_American", "bicultural", "combined"]].plot()


Out[10]:
<matplotlib.axes._subplots.AxesSubplot at 0x10aaa2940>