InputLayer (None, 1, 96, 96) produces 9216 outputs
Conv2DCCLayer (None, 128, 24, 24) produces 73728 outputs
MaxPool2DCCLayer (None, 128, 12, 12) produces 18432 outputs
Conv2DCCLayer (None, 128, 14, 14) produces 25088 outputs
Conv2DCCLayer (None, 256, 14, 14) produces 50176 outputs
MaxPool2DCCLayer (None, 256, 7, 7) produces 12544 outputs
DenseLayer (None, 512) produces 512 outputs
DropoutLayer (None, 512) produces 512 outputs
DenseLayer (None, 1024) produces 1024 outputs
DropoutLayer (None, 1024) produces 1024 outputs
DenseLayer (None, 1024) produces 1024 outputs
DropoutLayer (None, 1024) produces 1024 outputs
DenseLayer (None, 121) produces 121 outputs
Epoch | Train loss | Valid loss | Train / Val | Valid acc | Dur
--------|--------------|--------------|---------------|-------------|-------
1 | 4.514816 | 4.163301 | 1.084432 | 8.27% | 49.5s
2 | 3.980086 | 3.597655 | 1.106300 | 16.93% | 49.5s
3 | 3.567194 | 3.284719 | 1.085997 | 21.65% | 49.4s
4 | 3.315604 | 3.060953 | 1.083193 | 26.87% | 49.4s
5 | 3.099026 | 2.872228 | 1.078962 | 28.84% | 49.5s
6 | 2.910819 | 2.697009 | 1.079277 | 29.85% | 49.7s
7 | 2.821706 | 2.616247 | 1.078532 | 31.24% | 49.5s
8 | 2.703946 | 2.498064 | 1.082417 | 33.68% | 49.4s
9 | 2.616390 | 2.512062 | 1.041531 | 32.31% | 49.4s
10 | 2.549234 | 2.428952 | 1.049520 | 34.68% | 49.4s
11 | 2.491193 | 2.337574 | 1.065717 | 36.35% | 49.4s
12 | 2.422464 | 2.215787 | 1.093275 | 39.40% | 49.4s
13 | 2.366790 | 2.208795 | 1.071530 | 38.61% | 49.5s
14 | 2.308735 | 2.175928 | 1.061035 | 39.54% | 49.5s
15 | 2.265619 | 2.120879 | 1.068245 | 40.65% | 49.4s
16 | 2.221924 | 2.070891 | 1.072931 | 42.37% | 49.4s
17 | 2.183815 | 2.083005 | 1.048396 | 42.21% | 49.4s
18 | 2.132203 | 2.009348 | 1.061142 | 42.72% | 49.5s
19 | 2.100908 | 2.011510 | 1.044443 | 43.03% | 49.4s
20 | 2.076659 | 1.900964 | 1.092424 | 45.94% | 49.4s
21 | 2.037948 | 1.920455 | 1.061180 | 45.34% | 49.4s
22 | 2.018811 | 1.872297 | 1.078253 | 46.65% | 49.5s
23 | 1.967410 | 1.841147 | 1.068579 | 47.85% | 49.4s
24 | 1.942533 | 1.810295 | 1.073048 | 47.55% | 49.5s
25 | 1.921008 | 1.832116 | 1.048519 | 46.90% | 49.4s
26 | 1.905511 | 1.769671 | 1.076760 | 48.84% | 49.4s
27 | 1.871097 | 1.755242 | 1.066005 | 49.27% | 49.5s
28 | 1.849135 | 1.720815 | 1.074569 | 50.50% | 49.4s
29 | 1.819282 | 1.692050 | 1.075194 | 51.02% | 49.5s
30 | 1.812130 | 1.743172 | 1.039559 | 49.66% | 49.5s
31 | 1.793987 | 1.666084 | 1.076768 | 51.08% | 49.4s
32 | 1.776803 | 1.634412 | 1.087121 | 52.22% | 49.5s
33 | 1.750452 | 1.658430 | 1.055488 | 51.63% | 49.4s
34 | 1.742827 | 1.563013 | 1.115043 | 54.19% | 49.4s
35 | 1.711854 | 1.563566 | 1.094839 | 53.69% | 49.4s
36 | 1.698909 | 1.568497 | 1.083145 | 54.32% | 49.4s
37 | 1.682404 | 1.561713 | 1.077281 | 54.15% | 49.4s
38 | 1.670981 | 1.534934 | 1.088634 | 55.15% | 49.4s
39 | 1.652180 | 1.513844 | 1.091381 | 55.01% | 49.5s
40 | 1.641673 | 1.533495 | 1.070543 | 54.49% | 49.4s
41 | 1.633144 | 1.561326 | 1.045998 | 54.19% | 49.4s
42 | 1.615360 | 1.474950 | 1.095196 | 56.76% | 49.5s
43 | 1.597133 | 1.485237 | 1.075339 | 56.76% | 49.4s
44 | 1.593419 | 1.486545 | 1.071894 | 56.42% | 49.5s
45 | 1.561915 | 1.470089 | 1.062463 | 57.16% | 49.4s
46 | 1.554206 | 1.424547 | 1.091017 | 58.14% | 49.4s
47 | 1.549561 | 1.440954 | 1.075372 | 57.50% | 49.5s
48 | 1.532824 | 1.434566 | 1.068493 | 57.32% | 49.4s
49 | 1.516609 | 1.440470 | 1.052857 | 57.80% | 49.5s
50 | 1.506098 | 1.389755 | 1.083715 | 59.09% | 49.4s
51 | 1.491354 | 1.414077 | 1.054649 | 58.27% | 49.4s
52 | 1.483318 | 1.390689 | 1.066607 | 58.30% | 49.4s
53 | 1.467695 | 1.367602 | 1.073188 | 59.12% | 49.4s
54 | 1.452139 | 1.332706 | 1.089617 | 60.34% | 49.4s
55 | 1.446781 | 1.362945 | 1.061511 | 59.53% | 49.4s
56 | 1.431749 | 1.339082 | 1.069202 | 59.51% | 49.4s
57 | 1.430642 | 1.317417 | 1.085945 | 60.37% | 49.4s
58 | 1.419246 | 1.328529 | 1.068284 | 59.43% | 49.5s
59 | 1.398970 | 1.301874 | 1.074582 | 60.64% | 49.5s
60 | 1.385206 | 1.287436 | 1.075942 | 60.89% | 49.4s
61 | 1.377407 | 1.355822 | 1.015920 | 59.37% | 49.5s
62 | 1.372244 | 1.283601 | 1.069058 | 60.47% | 49.4s
63 | 1.363415 | 1.304996 | 1.044766 | 60.41% | 49.4s
64 | 1.363615 | 1.266258 | 1.076885 | 61.52% | 49.4s
65 | 1.344508 | 1.276009 | 1.053682 | 61.16% | 49.4s
66 | 1.349081 | 1.292838 | 1.043503 | 60.92% | 49.4s
67 | 1.333125 | 1.252468 | 1.064398 | 61.63% | 49.4s
68 | 1.322692 | 1.252394 | 1.056131 | 61.88% | 49.4s
69 | 1.319835 | 1.241417 | 1.063169 | 61.86% | 49.4s
70 | 1.319091 | 1.222712 | 1.078824 | 62.63% | 49.4s
71 | 1.296077 | 1.212942 | 1.068540 | 63.10% | 49.4s
72 | 1.297146 | 1.209261 | 1.072677 | 62.80% | 49.4s
73 | 1.291823 | 1.204978 | 1.072072 | 62.76% | 49.4s
74 | 1.278415 | 1.220816 | 1.047181 | 62.70% | 49.4s
75 | 1.272310 | 1.190547 | 1.068677 | 64.07% | 49.4s
76 | 1.262495 | 1.176762 | 1.072855 | 64.41% | 49.4s
77 | 1.254775 | 1.195535 | 1.049551 | 63.75% | 49.4s
78 | 1.247010 | 1.215342 | 1.026057 | 63.13% | 49.4s
79 | 1.253050 | 1.172953 | 1.068287 | 64.25% | 49.4s
80 | 1.235529 | 1.167482 | 1.058286 | 64.17% | 49.4s
81 | 1.227560 | 1.155867 | 1.062025 | 64.68% | 49.4s
82 | 1.222169 | 1.151243 | 1.061608 | 64.90% | 49.4s
83 | 1.222224 | 1.131508 | 1.080172 | 65.53% | 49.4s
84 | 1.204587 | 1.143734 | 1.053206 | 64.70% | 49.4s
85 | 1.207969 | 1.139976 | 1.059644 | 65.00% | 49.4s
86 | 1.199705 | 1.156605 | 1.037264 | 64.44% | 49.4s
87 | 1.202236 | 1.136478 | 1.057861 | 65.82% | 49.4s
88 | 1.183083 | 1.120658 | 1.055705 | 65.63% | 49.4s
89 | 1.182217 | 1.133777 | 1.042724 | 65.14% | 49.4s
90 | 1.172806 | 1.126961 | 1.040680 | 65.63% | 49.4s
91 | 1.169853 | 1.135410 | 1.030335 | 65.51% | 49.4s
92 | 1.168894 | 1.122702 | 1.041143 | 65.59% | 49.4s
93 | 1.157378 | 1.134094 | 1.020531 | 65.09% | 49.4s
94 | 1.160542 | 1.110024 | 1.045511 | 66.03% | 49.4s
95 | 1.145131 | 1.111658 | 1.030111 | 66.05% | 49.4s
96 | 1.166569 | 1.112682 | 1.048430 | 65.72% | 49.4s
97 | 1.140121 | 1.094416 | 1.041762 | 66.60% | 49.4s
98 | 1.136276 | 1.109716 | 1.023934 | 65.88% | 49.4s
99 | 1.129624 | 1.085541 | 1.040609 | 67.23% | 49.4s
100 | 1.128190 | 1.098800 | 1.026747 | 66.54% | 49.4s
101 | 1.121748 | 1.105049 | 1.015112 | 66.31% | 49.4s
102 | 1.117422 | 1.062774 | 1.051420 | 67.20% | 49.4s
103 | 1.117758 | 1.091395 | 1.024155 | 66.05% | 49.4s
104 | 1.112636 | 1.078133 | 1.032003 | 66.78% | 49.4s
105 | 1.097550 | 1.094728 | 1.002578 | 66.12% | 49.4s
106 | 1.096879 | 1.072264 | 1.022956 | 66.69% | 49.4s
107 | 1.086308 | 1.081636 | 1.004319 | 66.56% | 49.4s
108 | 1.085203 | 1.064435 | 1.019510 | 68.03% | 49.4s
109 | 1.080925 | 1.062571 | 1.017273 | 67.44% | 49.4s
110 | 1.082615 | 1.055512 | 1.025677 | 67.39% | 49.4s
111 | 1.082033 | 1.054505 | 1.026105 | 67.73% | 49.4s
112 | 1.076614 | 1.056937 | 1.018617 | 67.47% | 49.4s
113 | 1.068702 | 1.047788 | 1.019961 | 67.83% | 49.4s
114 | 1.065820 | 1.105656 | 0.963971 | 66.12% | 49.4s
115 | 1.051182 | 1.040323 | 1.010438 | 68.14% | 49.4s
116 | 1.057008 | 1.043031 | 1.013400 | 67.89% | 49.4s
117 | 1.057013 | 1.035396 | 1.020878 | 68.50% | 49.4s
118 | 1.045406 | 1.045215 | 1.000182 | 68.08% | 49.4s
119 | 1.040881 | 1.042378 | 0.998564 | 67.67% | 49.4s
120 | 1.040673 | 1.055302 | 0.986138 | 67.36% | 49.4s
121 | 1.034022 | 1.042256 | 0.992100 | 67.76% | 49.4s
122 | 1.038296 | 1.020504 | 1.017434 | 68.84% | 49.4s
123 | 1.034292 | 1.021986 | 1.012040 | 68.81% | 49.4s
124 | 1.028819 | 1.032608 | 0.996330 | 67.83% | 49.4s
125 | 1.017421 | 1.032486 | 0.985409 | 68.41% | 49.4s
126 | 1.016683 | 1.041234 | 0.976422 | 67.94% | 49.4s
127 | 1.017793 | 1.019769 | 0.998062 | 68.66% | 49.4s
128 | 1.021532 | 1.014278 | 1.007151 | 69.05% | 49.4s
129 | 1.008226 | 1.035713 | 0.973460 | 68.47% | 49.4s
130 | 1.007548 | 1.025495 | 0.982499 | 68.16% | 49.4s
131 | 0.998978 | 1.039770 | 0.960768 | 68.13% | 49.4s
132 | 1.002085 | 1.004231 | 0.997863 | 69.27% | 49.4s
133 | 0.999713 | 0.995762 | 1.003968 | 69.31% | 49.4s
134 | 0.992301 | 1.014942 | 0.977693 | 68.29% | 49.4s
135 | 0.993338 | 1.006361 | 0.987059 | 69.37% | 49.4s
136 | 0.981874 | 1.016890 | 0.965566 | 68.75% | 49.4s
137 | 0.987003 | 1.010746 | 0.976510 | 68.98% | 49.4s
138 | 0.972870 | 0.998955 | 0.973887 | 69.11% | 49.4s
139 | 0.980951 | 1.007243 | 0.973897 | 68.84% | 49.4s
140 | 0.969003 | 1.032295 | 0.938688 | 68.03% | 49.4s
141 | 0.962753 | 0.999522 | 0.963213 | 69.40% | 49.4s
142 | 0.976385 | 0.989934 | 0.986314 | 70.01% | 49.4s
143 | 0.961898 | 1.007589 | 0.954654 | 69.32% | 49.4s
144 | 0.954035 | 1.007027 | 0.947379 | 68.95% | 49.4s
145 | 0.954553 | 1.015339 | 0.940132 | 68.46% | 49.4s
146 | 0.961166 | 1.009790 | 0.951848 | 69.49% | 49.4s
147 | 0.949982 | 0.979855 | 0.969513 | 69.79% | 49.4s
148 | 0.953713 | 0.996810 | 0.956765 | 69.22% | 49.4s
149 | 0.949701 | 0.992667 | 0.956716 | 69.33% | 49.4s
150 | 0.937505 | 0.991999 | 0.945066 | 69.68% | 49.4s
151 | 0.950444 | 0.983379 | 0.966509 | 69.80% | 49.4s
152 | 0.934313 | 0.986467 | 0.947130 | 69.08% | 49.4s
153 | 0.940119 | 1.002522 | 0.937754 | 68.86% | 49.4s
154 | 0.930459 | 1.001948 | 0.928650 | 69.45% | 49.4s
155 | 0.935676 | 1.017651 | 0.919446 | 68.25% | 49.4s
156 | 0.930803 | 0.982519 | 0.947364 | 70.17% | 49.4s
157 | 0.919376 | 0.992877 | 0.925971 | 69.36% | 49.4s
158 | 0.922103 | 1.002446 | 0.919853 | 69.40% | 49.4s
159 | 0.929952 | 0.972304 | 0.956442 | 70.27% | 49.4s
160 | 0.919674 | 0.973126 | 0.945072 | 70.14% | 49.4s
161 | 0.913589 | 0.984945 | 0.927554 | 69.76% | 49.4s
162 | 0.911624 | 0.966275 | 0.943441 | 70.41% | 49.4s
163 | 0.904873 | 0.977203 | 0.925982 | 70.15% | 49.4s
164 | 0.901595 | 0.967338 | 0.932037 | 70.72% | 49.4s
165 | 0.900213 | 0.974013 | 0.924231 | 70.36% | 49.4s
166 | 0.901677 | 0.985186 | 0.915235 | 69.36% | 49.4s
167 | 0.903380 | 0.970022 | 0.931298 | 69.96% | 49.4s
168 | 0.902221 | 0.973682 | 0.926608 | 70.12% | 49.4s
169 | 0.898907 | 0.985716 | 0.911933 | 69.75% | 49.4s
170 | 0.887822 | 0.990335 | 0.896487 | 69.43% | 49.4s
171 | 0.883402 | 0.959814 | 0.920389 | 70.57% | 49.4s
172 | 0.895198 | 0.953028 | 0.939321 | 70.61% | 49.4s
173 | 0.889065 | 0.949948 | 0.935909 | 70.64% | 49.4s
174 | 0.892756 | 0.965353 | 0.924798 | 70.09% | 49.4s
175 | 0.885764 | 0.954814 | 0.927682 | 70.57% | 49.4s
176 | 0.883839 | 0.966246 | 0.914714 | 70.60% | 49.4s
177 | 0.879234 | 0.950466 | 0.925055 | 70.73% | 49.4s
178 | 0.877990 | 0.940062 | 0.933971 | 71.60% | 49.4s
179 | 0.881069 | 0.939933 | 0.937374 | 71.27% | 49.4s
180 | 0.874736 | 0.957897 | 0.913183 | 70.41% | 49.4s
181 | 0.872765 | 0.970584 | 0.899216 | 69.96% | 49.4s
182 | 0.864182 | 1.019106 | 0.847980 | 68.87% | 49.4s
183 | 0.868964 | 0.967845 | 0.897833 | 69.87% | 49.4s
184 | 0.865975 | 0.949692 | 0.911848 | 70.29% | 49.4s
185 | 0.870170 | 0.960285 | 0.906158 | 70.49% | 49.4s
186 | 0.862089 | 0.951914 | 0.905637 | 70.45% | 49.4s
187 | 0.856168 | 0.963459 | 0.888640 | 70.48% | 49.4s
188 | 0.855411 | 0.944844 | 0.905346 | 70.97% | 49.4s
189 | 0.850957 | 0.955848 | 0.890264 | 70.50% | 49.4s
190 | 0.856053 | 0.961424 | 0.890401 | 70.92% | 49.4s
191 | 0.845816 | 0.960988 | 0.880153 | 70.13% | 49.4s
192 | 0.854358 | 0.965689 | 0.884713 | 70.26% | 49.4s
193 | 0.847524 | 0.967536 | 0.875961 | 70.26% | 49.4s
194 | 0.851652 | 0.998878 | 0.852609 | 69.20% | 49.4s
195 | 0.847535 | 0.966850 | 0.876594 | 70.20% | 49.4s
196 | 0.840495 | 0.955465 | 0.879672 | 70.55% | 49.4s
197 | 0.840563 | 0.951415 | 0.883487 | 71.17% | 49.4s
198 | 0.837756 | 0.950321 | 0.881550 | 71.45% | 49.4s
199 | 0.837865 | 0.961456 | 0.871455 | 70.33% | 49.4s
200 | 0.842373 | 0.965378 | 0.872583 | 70.59% | 49.4s
201 | 0.826729 | 0.947607 | 0.872439 | 71.09% | 49.4s
202 | 0.827910 | 0.949629 | 0.871824 | 71.05% | 49.4s
203 | 0.830272 | 0.944420 | 0.879134 | 71.07% | 49.4s
204 | 0.826034 | 0.930714 | 0.887526 | 71.41% | 49.4s
205 | 0.817770 | 0.948090 | 0.862545 | 70.97% | 49.4s
206 | 0.831199 | 0.945710 | 0.878916 | 71.11% | 49.4s
207 | 0.829552 | 0.948100 | 0.874962 | 71.26% | 49.4s
208 | 0.819805 | 0.939484 | 0.872613 | 71.45% | 49.4s
209 | 0.817773 | 0.938349 | 0.871502 | 71.43% | 49.4s
210 | 0.814414 | 0.941101 | 0.865384 | 71.11% | 49.4s
211 | 0.815203 | 0.942973 | 0.864503 | 70.93% | 49.4s
212 | 0.810585 | 0.951296 | 0.852085 | 70.84% | 49.4s
213 | 0.809185 | 0.936687 | 0.863879 | 71.45% | 49.4s
214 | 0.807195 | 0.932417 | 0.865702 | 71.59% | 49.4s
215 | 0.796035 | 0.936942 | 0.849610 | 71.47% | 49.4s
216 | 0.805593 | 0.949054 | 0.848838 | 70.65% | 49.4s
217 | 0.798731 | 0.939910 | 0.849795 | 71.10% | 49.4s
218 | 0.798498 | 0.948333 | 0.842002 | 70.86% | 49.4s
219 | 0.801256 | 0.941369 | 0.851160 | 71.75% | 49.4s
220 | 0.808488 | 0.943726 | 0.856698 | 71.04% | 49.4s
221 | 0.802212 | 0.931109 | 0.861566 | 71.82% | 49.4s
222 | 0.796021 | 0.932008 | 0.854093 | 71.72% | 49.4s
223 | 0.795592 | 0.930342 | 0.855161 | 71.90% | 49.4s
224 | 0.796487 | 0.932502 | 0.854140 | 72.03% | 49.4s
225 | 0.788895 | 0.924884 | 0.852966 | 71.76% | 49.4s
226 | 0.792307 | 0.950835 | 0.833275 | 70.72% | 49.4s
227 | 0.783191 | 0.919881 | 0.851404 | 72.49% | 49.4s
228 | 0.792024 | 0.924706 | 0.856515 | 71.85% | 49.4s
229 | 0.788496 | 0.936540 | 0.841924 | 71.91% | 49.4s
230 | 0.787978 | 0.932609 | 0.844918 | 71.56% | 49.4s
231 | 0.785036 | 0.936635 | 0.838145 | 71.57% | 49.4s
232 | 0.779073 | 0.922242 | 0.844760 | 71.97% | 49.4s
233 | 0.778738 | 0.939362 | 0.829007 | 71.74% | 49.4s
234 | 0.777392 | 0.918409 | 0.846454 | 72.26% | 49.4s
235 | 0.763842 | 0.937082 | 0.815129 | 71.58% | 49.4s
236 | 0.781248 | 0.938149 | 0.832754 | 71.51% | 49.4s
237 | 0.770802 | 0.959116 | 0.803659 | 70.90% | 49.4s
238 | 0.766570 | 0.926491 | 0.827391 | 71.82% | 49.4s
239 | 0.772932 | 0.926745 | 0.834028 | 71.85% | 49.4s
240 | 0.763671 | 0.926758 | 0.824024 | 71.74% | 49.4s
241 | 0.766188 | 0.925938 | 0.827472 | 71.93% | 49.4s
242 | 0.773151 | 0.934637 | 0.827220 | 71.95% | 49.4s
243 | 0.761318 | 0.928313 | 0.820110 | 71.99% | 49.4s
244 | 0.766596 | 0.931126 | 0.823300 | 71.83% | 49.4s
245 | 0.765821 | 0.934513 | 0.819486 | 71.22% | 49.4s
246 | 0.758088 | 0.934026 | 0.811636 | 71.61% | 49.4s
247 | 0.758844 | 0.920860 | 0.824060 | 71.77% | 49.4s
248 | 0.757697 | 0.926107 | 0.818152 | 72.00% | 49.4s
249 | 0.753380 | 0.943285 | 0.798678 | 71.54% | 49.4s
250 | 0.765321 | 0.938549 | 0.815430 | 71.23% | 49.4s
251 | 0.745445 | 0.943875 | 0.789771 | 71.66% | 49.4s
252 | 0.744768 | 0.937517 | 0.794405 | 71.71% | 49.4s
253 | 0.746841 | 0.938869 | 0.795470 | 71.57% | 49.4s
254 | 0.747362 | 0.931301 | 0.802492 | 71.69% | 49.4s
255 | 0.742702 | 0.943024 | 0.787575 | 71.54% | 49.4s
256 | 0.752451 | 0.916810 | 0.820728 | 72.34% | 49.4s
257 | 0.750356 | 0.931699 | 0.805363 | 71.66% | 49.4s
258 | 0.736891 | 0.923043 | 0.798328 | 72.34% | 49.4s
259 | 0.736678 | 0.921539 | 0.799399 | 72.34% | 49.4s
260 | 0.745727 | 0.926625 | 0.804777 | 71.86% | 49.4s
261 | 0.741144 | 0.922486 | 0.803421 | 72.36% | 49.4s
262 | 0.730796 | 0.932365 | 0.783808 | 72.03% | 49.4s
263 | 0.728777 | 0.919385 | 0.792679 | 71.99% | 49.4s
264 | 0.732199 | 0.936415 | 0.781918 | 71.76% | 49.4s
265 | 0.732964 | 0.920892 | 0.795928 | 71.97% | 49.4s
266 | 0.732527 | 0.932582 | 0.785482 | 71.32% | 49.4s
267 | 0.733064 | 0.921251 | 0.795726 | 72.28% | 49.4s
268 | 0.733052 | 0.934296 | 0.784603 | 72.20% | 49.4s
269 | 0.726792 | 0.918438 | 0.791335 | 72.68% | 49.4s
270 | 0.720705 | 0.922346 | 0.781382 | 72.33% | 49.4s
271 | 0.725622 | 0.921778 | 0.787199 | 72.17% | 49.4s
272 | 0.733478 | 0.909071 | 0.806843 | 72.30% | 49.4s
273 | 0.721379 | 0.930017 | 0.775662 | 72.04% | 49.4s
274 | 0.716054 | 0.918043 | 0.779978 | 72.47% | 49.4s
275 | 0.720020 | 0.916101 | 0.785962 | 72.33% | 49.4s
276 | 0.706735 | 0.920212 | 0.768014 | 72.36% | 49.4s
277 | 0.710928 | 0.927330 | 0.766640 | 72.04% | 49.4s
278 | 0.706938 | 0.909599 | 0.777197 | 72.62% | 49.4s
279 | 0.707781 | 0.923929 | 0.766056 | 71.89% | 49.4s
280 | 0.717188 | 0.915233 | 0.783613 | 72.30% | 49.4s
281 | 0.702395 | 0.918526 | 0.764698 | 72.49% | 49.4s
282 | 0.710904 | 0.909827 | 0.781362 | 72.82% | 49.4s
283 | 0.715301 | 0.915396 | 0.781411 | 72.40% | 49.4s
284 | 0.720404 | 0.917644 | 0.785058 | 71.96% | 49.4s
285 | 0.708330 | 0.922918 | 0.767490 | 71.87% | 49.4s
286 | 0.700401 | 0.913698 | 0.766556 | 72.37% | 49.4s
287 | 0.705097 | 0.925862 | 0.761557 | 72.25% | 49.4s
288 | 0.709369 | 0.921165 | 0.770079 | 72.21% | 49.4s
289 | 0.698956 | 0.932391 | 0.749638 | 71.93% | 49.4s
290 | 0.711080 | 0.923316 | 0.770137 | 72.13% | 49.4s
291 | 0.700229 | 0.945503 | 0.740589 | 71.81% | 49.4s
292 | 0.710864 | 0.927015 | 0.766831 | 72.58% | 49.4s
293 | 0.704391 | 0.923846 | 0.762454 | 72.34% | 49.4s
294 | 0.691201 | 0.921059 | 0.750442 | 72.51% | 49.4s
295 | 0.688865 | 0.913954 | 0.753719 | 72.76% | 49.4s
296 | 0.685017 | 0.922960 | 0.742196 | 72.05% | 49.4s
297 | 0.696606 | 0.924606 | 0.753409 | 72.43% | 49.4s
298 | 0.690129 | 0.928493 | 0.743278 | 72.02% | 49.4s
299 | 0.687595 | 0.919014 | 0.748188 | 72.34% | 49.4s
300 | 0.685325 | 0.918171 | 0.746402 | 72.27% | 49.4s
301 | 0.691333 | 0.924638 | 0.747679 | 72.54% | 49.4s
302 | 0.681726 | 0.922700 | 0.738838 | 72.80% | 49.4s
303 | 0.696184 | 0.921536 | 0.755460 | 72.42% | 49.4s
304 | 0.686320 | 0.922102 | 0.744299 | 72.67% | 49.4s
305 | 0.689981 | 0.946737 | 0.728800 | 71.58% | 49.4s
306 | 0.687565 | 0.906253 | 0.758690 | 73.12% | 49.4s
307 | 0.679431 | 0.915929 | 0.741795 | 72.69% | 49.4s
308 | 0.678204 | 0.910859 | 0.744577 | 73.08% | 49.4s
309 | 0.679538 | 0.910822 | 0.746071 | 72.32% | 49.4s
310 | 0.682977 | 0.924808 | 0.738507 | 72.06% | 49.4s
311 | 0.677376 | 0.922763 | 0.734073 | 72.87% | 49.4s
312 | 0.672514 | 0.909086 | 0.739769 | 72.50% | 49.4s
313 | 0.675404 | 0.906137 | 0.745366 | 72.37% | 49.4s
314 | 0.678743 | 0.953911 | 0.711537 | 71.26% | 49.4s
315 | 0.683877 | 0.924296 | 0.739890 | 72.37% | 49.4s
316 | 0.669211 | 0.905331 | 0.739189 | 72.76% | 49.4s
317 | 0.676231 | 0.917757 | 0.736830 | 72.75% | 49.4s
318 | 0.668742 | 0.928285 | 0.720406 | 72.33% | 49.4s
319 | 0.669340 | 0.921558 | 0.726314 | 72.83% | 49.4s
320 | 0.661386 | 0.916987 | 0.721261 | 72.34% | 49.4s
321 | 0.664787 | 0.921216 | 0.721640 | 72.54% | 49.4s
322 | 0.669071 | 0.935918 | 0.714882 | 71.89% | 49.4s
323 | 0.673991 | 0.912290 | 0.738790 | 72.23% | 49.4s
324 | 0.673876 | 0.920255 | 0.732272 | 72.57% | 49.4s
325 | 0.663447 | 0.933546 | 0.710674 | 72.52% | 49.4s
326 | 0.658156 | 0.929423 | 0.708134 | 72.50% | 49.4s
327 | 0.660325 | 0.923813 | 0.714782 | 72.58% | 49.4s
328 | 0.658969 | 0.913435 | 0.721419 | 72.77% | 49.4s
329 | 0.667764 | 0.926042 | 0.721094 | 72.56% | 49.4s
330 | 0.651988 | 0.921675 | 0.707395 | 72.71% | 49.4s
331 | 0.651169 | 0.938713 | 0.693682 | 72.31% | 49.4s
332 | 0.657655 | 0.935980 | 0.702638 | 72.57% | 49.4s
333 | 0.651096 | 0.923542 | 0.704998 | 72.64% | 49.4s
334 | 0.656845 | 0.913370 | 0.719144 | 72.57% | 49.4s
335 | 0.643925 | 0.934483 | 0.689071 | 72.79% | 49.4s
336 | 0.656832 | 0.928107 | 0.707712 | 72.36% | 49.4s
337 | 0.658005 | 0.933003 | 0.705255 | 72.31% | 49.4s
338 | 0.645088 | 0.915861 | 0.704352 | 72.96% | 49.4s
339 | 0.641145 | 0.926035 | 0.692355 | 72.89% | 49.4s
340 | 0.645164 | 0.932061 | 0.692190 | 72.52% | 49.4s
341 | 0.640423 | 0.929777 | 0.688792 | 72.67% | 49.4s
342 | 0.648243 | 0.919813 | 0.704755 | 73.20% | 49.4s
343 | 0.636766 | 0.931616 | 0.683507 | 73.43% | 49.4s
344 | 0.642386 | 0.958868 | 0.669942 | 71.66% | 49.4s
345 | 0.645138 | 0.921027 | 0.700455 | 72.63% | 49.4s
346 | 0.635598 | 0.916588 | 0.693439 | 72.76% | 49.4s
347 | 0.638965 | 0.927532 | 0.688888 | 73.06% | 49.4s
348 | 0.635730 | 0.927994 | 0.685059 | 72.81% | 49.4s
349 | 0.642340 | 0.923824 | 0.695305 | 72.18% | 49.4s
350 | 0.638139 | 0.937873 | 0.680410 | 72.56% | 49.4s
351 | 0.634168 | 0.922569 | 0.687393 | 72.74% | 49.4s
352 | 0.635287 | 0.926964 | 0.685342 | 72.71% | 49.4s
353 | 0.637509 | 0.937422 | 0.680067 | 72.57% | 49.4s
354 | 0.629893 | 0.939596 | 0.670387 | 72.67% | 49.4s
355 | 0.632785 | 0.950380 | 0.665824 | 72.58% | 49.4s
356 | 0.643508 | 0.934564 | 0.688565 | 72.59% | 49.4s
357 | 0.627625 | 0.917793 | 0.683841 | 73.47% | 49.4s
358 | 0.632957 | 0.951601 | 0.665149 | 71.97% | 49.4s
359 | 0.635932 | 0.947261 | 0.671338 | 72.52% | 49.4s
360 | 0.627176 | 0.924132 | 0.678665 | 72.83% | 49.4s
361 | 0.628446 | 0.923385 | 0.680589 | 73.06% | 49.4s
362 | 0.621080 | 0.976203 | 0.636220 | 72.29% | 49.4s
363 | 0.627363 | 0.929566 | 0.674899 | 73.27% | 49.4s
364 | 0.625007 | 0.944542 | 0.661704 | 72.76% | 49.4s
365 | 0.622927 | 0.934442 | 0.666630 | 72.83% | 49.4s
366 | 0.623295 | 0.924217 | 0.674403 | 73.09% | 49.4s
367 | 0.627894 | 0.934297 | 0.672050 | 72.63% | 49.4s
Early stopping.
Best valid loss was 0.905331 at epoch 316.
Out[143]:
NeuralNet(X_tensor_type=<function tensor4 at 0x7f65461392a8>,
batch_iterator_test=<nolearn.lasagne.BatchIterator object at 0x7f6539004590>,
batch_iterator_train=<__main__.FlipBatchIterator object at 0x7f64ed4bbfd0>,
conv1_filter_size=(5, 5),
conv1_nonlinearity=<function rectify at 0x7f65394a6398>,
conv1_num_filters=128, conv1_pad=2, conv1_strides=(4, 4),
conv2_filter_size=(3, 3),
conv2_nonlinearity=<function rectify at 0x7f65394a6398>,
conv2_num_filters=128, conv2_pad=2, conv3_filter_size=(3, 3),
conv3_nonlinearity=<function rectify at 0x7f65394a6398>,
conv3_num_filters=256, conv3_pad=1, dropout1_p=0.3, dropout2_p=0.5,
dropout3_p=0.5, eval_size=0.2,
hidden1_nonlinearity=<function rectify at 0x7f65394a6398>,
hidden1_num_units=512,
hidden2_nonlinearity=<function rectify at 0x7f65394a6398>,
hidden2_num_units=1024,
hidden3_nonlinearity=<function rectify at 0x7f65394a6398>,
hidden3_num_units=1024, input_shape=(None, 1, 96, 96),
layers=[('input', <class 'lasagne.layers.input.InputLayer'>), ('conv1', <class 'lasagne.layers.cuda_convnet.Conv2DCCLayer'>), ('pool1', <class 'lasagne.layers.cuda_convnet.MaxPool2DCCLayer'>), ('conv2', <class 'lasagne.layers.cuda_convnet.Conv2DCCLayer'>), ('conv3', <class 'lasagne.layers.cuda_convn...<class 'lasagne.layers.noise.DropoutLayer'>), ('output', <class 'lasagne.layers.dense.DenseLayer'>)],
loss=<function negative_log_likelihood at 0x7f6539028de8>,
max_epochs=500, more_params={},
on_epoch_finished=[<__main__.AdjustVariable object at 0x7f64ed4972d0>, <__main__.AdjustVariable object at 0x7f64ed497310>, <__main__.EarlyStopping object at 0x7f64ed497390>],
on_training_finished=(),
output_nonlinearity=<theano.tensor.nnet.nnet.Softmax object at 0x7f6545d81b50>,
output_num_units=121, pool1_ds=(3, 3), pool1_strides=(2, 2),
pool3_ds=(3, 3), pool3_strides=(2, 2), regression=False,
test_size=0.1, update=<function nesterov_momentum at 0x7f6539028aa0>,
update_learning_rate=array(0.002738677430897951, dtype=float32),
update_momentum=array(0.9726132154464722, dtype=float32),
use_label_encoder=True, verbose=2,
y_tensor_type=TensorType(int32, vector))