InputLayer (None, 1, 96, 96) produces 9216 outputs
Conv2DCCLayer (None, 128, 24, 24) produces 73728 outputs
MaxPool2DCCLayer (None, 128, 12, 12) produces 18432 outputs
Conv2DCCLayer (None, 128, 14, 14) produces 25088 outputs
Conv2DCCLayer (None, 256, 14, 14) produces 50176 outputs
MaxPool2DCCLayer (None, 256, 7, 7) produces 12544 outputs
DenseLayer (None, 512) produces 512 outputs
DropoutLayer (None, 512) produces 512 outputs
DenseLayer (None, 1024) produces 1024 outputs
DropoutLayer (None, 1024) produces 1024 outputs
DenseLayer (None, 1024) produces 1024 outputs
DropoutLayer (None, 1024) produces 1024 outputs
DenseLayer (None, 121) produces 121 outputs
Epoch | Train loss | Valid loss | Train / Val | Valid acc | Dur
--------|--------------|--------------|---------------|-------------|-------
1 | 4.483405 | 4.147762 | 1.080922 | 7.93% | 49.4s
2 | 3.956456 | 3.623393 | 1.091920 | 18.07% | 49.4s
3 | 3.505107 | 3.323158 | 1.054752 | 19.25% | 49.4s
4 | 3.195605 | 3.007635 | 1.062497 | 25.24% | 49.4s
5 | 2.971283 | 2.841300 | 1.045748 | 27.68% | 49.4s
6 | 2.849359 | 2.860910 | 0.995962 | 28.19% | 49.4s
7 | 2.687159 | 2.678267 | 1.003320 | 30.77% | 49.4s
8 | 2.587981 | 2.673815 | 0.967898 | 31.73% | 49.4s
9 | 2.489894 | 2.585591 | 0.962988 | 32.47% | 49.4s
10 | 2.408684 | 2.505304 | 0.961434 | 33.50% | 49.4s
11 | 2.331886 | 2.463489 | 0.946579 | 34.08% | 49.4s
12 | 2.289552 | 2.285470 | 1.001786 | 37.71% | 49.4s
13 | 2.231977 | 2.199522 | 1.014755 | 39.41% | 49.4s
14 | 2.165888 | 2.181798 | 0.992708 | 40.35% | 49.4s
15 | 2.147671 | 2.172305 | 0.988660 | 40.66% | 49.4s
16 | 2.102506 | 2.364105 | 0.889346 | 37.01% | 49.5s
17 | 2.093992 | 2.130365 | 0.982927 | 42.42% | 49.4s
18 | 2.052511 | 2.154868 | 0.952500 | 41.28% | 49.4s
19 | 2.003667 | 2.141448 | 0.935660 | 40.96% | 49.4s
20 | 1.965992 | 2.053797 | 0.957248 | 44.35% | 49.4s
21 | 1.948577 | 2.085980 | 0.934130 | 43.12% | 49.4s
22 | 1.935591 | 2.019508 | 0.958447 | 44.29% | 49.4s
23 | 1.904112 | 1.975349 | 0.963937 | 45.64% | 49.4s
24 | 1.856897 | 1.989715 | 0.933248 | 44.79% | 49.4s
25 | 1.849020 | 1.900174 | 0.973079 | 47.44% | 49.4s
26 | 1.825449 | 1.879902 | 0.971034 | 47.60% | 49.4s
27 | 1.779066 | 1.913960 | 0.929521 | 47.06% | 49.4s
28 | 1.795901 | 1.802789 | 0.996179 | 49.32% | 49.4s
29 | 1.761639 | 1.849580 | 0.952454 | 48.37% | 49.4s
30 | 1.749912 | 1.930728 | 0.906348 | 46.11% | 49.4s
31 | 1.717577 | 1.892136 | 0.907745 | 46.70% | 49.4s
32 | 1.691761 | 1.742316 | 0.970984 | 50.82% | 49.4s
33 | 1.688696 | 1.765140 | 0.956693 | 50.52% | 49.4s
34 | 1.678378 | 1.697991 | 0.988450 | 51.74% | 49.4s
35 | 1.653785 | 1.795589 | 0.921026 | 49.84% | 49.4s
36 | 1.641268 | 1.679063 | 0.977491 | 51.89% | 49.4s
37 | 1.626442 | 1.670235 | 0.973780 | 52.31% | 49.4s
38 | 1.610089 | 1.588892 | 1.013340 | 54.68% | 49.4s
39 | 1.586330 | 1.621110 | 0.978546 | 53.29% | 49.4s
40 | 1.585804 | 1.602801 | 0.989395 | 54.64% | 49.4s
41 | 1.567384 | 1.552715 | 1.009447 | 54.69% | 49.4s
42 | 1.537936 | 1.612796 | 0.953584 | 53.62% | 49.4s
43 | 1.526787 | 1.553982 | 0.982499 | 55.81% | 49.4s
44 | 1.520211 | 1.514562 | 1.003730 | 56.09% | 49.4s
45 | 1.496268 | 1.539803 | 0.971726 | 55.05% | 49.4s
46 | 1.485144 | 1.507410 | 0.985229 | 56.54% | 49.4s
47 | 1.473430 | 1.527962 | 0.964311 | 55.42% | 49.4s
48 | 1.480066 | 1.506624 | 0.982372 | 56.59% | 49.4s
49 | 1.458422 | 1.467763 | 0.993636 | 57.29% | 49.4s
50 | 1.430489 | 1.460380 | 0.979532 | 57.09% | 49.4s
51 | 1.439750 | 1.473150 | 0.977327 | 57.63% | 49.4s
52 | 1.418971 | 1.458127 | 0.973146 | 56.81% | 49.4s
53 | 1.415404 | 1.416494 | 0.999231 | 58.20% | 49.4s
54 | 1.397490 | 1.434423 | 0.974252 | 57.45% | 49.4s
55 | 1.383669 | 1.419859 | 0.974512 | 57.93% | 49.4s
56 | 1.390800 | 1.407732 | 0.987972 | 58.86% | 49.4s
57 | 1.374517 | 1.380185 | 0.995894 | 59.32% | 49.4s
58 | 1.353861 | 1.471471 | 0.920073 | 56.46% | 49.4s
59 | 1.366721 | 1.345516 | 1.015760 | 59.90% | 49.4s
60 | 1.349422 | 1.326683 | 1.017140 | 60.43% | 49.4s
61 | 1.334226 | 1.340782 | 0.995110 | 59.90% | 49.4s
62 | 1.319123 | 1.320201 | 0.999184 | 59.85% | 49.4s
63 | 1.308310 | 1.275306 | 1.025879 | 61.90% | 49.4s
64 | 1.300387 | 1.333756 | 0.974981 | 59.79% | 49.4s
65 | 1.296446 | 1.336204 | 0.970245 | 60.03% | 49.4s
66 | 1.284875 | 1.313067 | 0.978529 | 60.37% | 49.4s
67 | 1.290139 | 1.284771 | 1.004178 | 61.43% | 49.4s
68 | 1.269570 | 1.284647 | 0.988264 | 61.22% | 49.4s
69 | 1.266865 | 1.292598 | 0.980092 | 61.12% | 49.4s
70 | 1.252213 | 1.263352 | 0.991183 | 62.25% | 49.4s
71 | 1.247510 | 1.251704 | 0.996650 | 62.15% | 49.4s
72 | 1.230090 | 1.236122 | 0.995120 | 62.45% | 49.4s
73 | 1.236986 | 1.258299 | 0.983062 | 61.98% | 49.4s
74 | 1.230568 | 1.216922 | 1.011213 | 63.28% | 49.4s
75 | 1.214610 | 1.229985 | 0.987500 | 63.00% | 49.4s
76 | 1.209517 | 1.220116 | 0.991313 | 62.54% | 49.4s
77 | 1.210944 | 1.198138 | 1.010688 | 63.09% | 49.4s
78 | 1.191764 | 1.190372 | 1.001169 | 63.94% | 49.4s
79 | 1.194962 | 1.223727 | 0.976493 | 63.08% | 49.4s
80 | 1.185520 | 1.239132 | 0.956734 | 62.35% | 49.4s
81 | 1.189170 | 1.177779 | 1.009672 | 64.30% | 49.4s
82 | 1.172421 | 1.168508 | 1.003349 | 64.88% | 49.5s
83 | 1.182346 | 1.174673 | 1.006532 | 63.95% | 49.4s
84 | 1.171837 | 1.159464 | 1.010671 | 64.48% | 49.4s
85 | 1.164446 | 1.162284 | 1.001860 | 64.67% | 49.4s
86 | 1.161392 | 1.162012 | 0.999467 | 64.38% | 49.4s
87 | 1.150021 | 1.140535 | 1.008318 | 64.97% | 49.4s
88 | 1.141827 | 1.127541 | 1.012671 | 65.89% | 49.4s
89 | 1.130111 | 1.132764 | 0.997659 | 65.92% | 49.4s
90 | 1.126393 | 1.129398 | 0.997339 | 65.00% | 49.5s
91 | 1.116926 | 1.147830 | 0.973077 | 64.72% | 49.4s
92 | 1.120754 | 1.131405 | 0.990586 | 65.65% | 49.4s
93 | 1.110725 | 1.140587 | 0.973819 | 64.95% | 49.4s
94 | 1.109113 | 1.114516 | 0.995152 | 65.74% | 49.5s
95 | 1.110721 | 1.126576 | 0.985926 | 65.67% | 49.5s
96 | 1.101257 | 1.105675 | 0.996005 | 65.52% | 49.5s
97 | 1.092739 | 1.097234 | 0.995904 | 66.35% | 49.4s
98 | 1.084767 | 1.104479 | 0.982153 | 66.10% | 49.4s
99 | 1.093905 | 1.113206 | 0.982662 | 65.55% | 49.4s
100 | 1.084018 | 1.091031 | 0.993573 | 66.66% | 49.4s
101 | 1.074550 | 1.079606 | 0.995316 | 66.74% | 49.4s
102 | 1.070960 | 1.086653 | 0.985558 | 67.00% | 49.4s
103 | 1.062189 | 1.096673 | 0.968555 | 66.41% | 49.4s
104 | 1.057234 | 1.070373 | 0.987725 | 66.52% | 49.4s
105 | 1.056756 | 1.081801 | 0.976849 | 66.58% | 49.4s
106 | 1.059600 | 1.065025 | 0.994906 | 66.96% | 49.4s
107 | 1.044407 | 1.104049 | 0.945979 | 66.29% | 49.4s
108 | 1.055580 | 1.076289 | 0.980758 | 67.06% | 49.4s
109 | 1.046107 | 1.080403 | 0.968256 | 66.62% | 49.4s
110 | 1.039685 | 1.103117 | 0.942498 | 65.88% | 49.4s
111 | 1.046034 | 1.058201 | 0.988503 | 67.28% | 49.4s
112 | 1.032761 | 1.070864 | 0.964419 | 67.04% | 49.4s
113 | 1.026057 | 1.078670 | 0.951223 | 66.68% | 49.4s
114 | 1.020479 | 1.052303 | 0.969758 | 67.26% | 49.4s
115 | 1.014376 | 1.064950 | 0.952511 | 66.93% | 49.4s
116 | 1.021084 | 1.043015 | 0.978974 | 67.75% | 49.4s
117 | 1.007574 | 1.070012 | 0.941648 | 66.72% | 49.4s
118 | 1.007407 | 1.052290 | 0.957348 | 67.02% | 49.4s
119 | 1.002326 | 1.028752 | 0.974313 | 67.69% | 49.4s
120 | 0.988095 | 1.049535 | 0.941459 | 67.13% | 49.4s
121 | 0.987119 | 1.036740 | 0.952138 | 68.01% | 49.5s
122 | 0.993637 | 1.030632 | 0.964104 | 67.77% | 49.4s
123 | 0.983109 | 1.038061 | 0.947062 | 67.95% | 49.4s
124 | 0.977796 | 1.038727 | 0.941341 | 67.38% | 49.4s
125 | 0.971989 | 1.022618 | 0.950491 | 68.35% | 49.4s
126 | 0.974326 | 1.031093 | 0.944945 | 67.93% | 49.4s
127 | 0.971924 | 1.027836 | 0.945602 | 68.41% | 49.4s
128 | 0.959462 | 1.023314 | 0.937603 | 68.16% | 49.4s
129 | 0.965237 | 1.037520 | 0.930331 | 67.98% | 49.4s
130 | 0.956925 | 1.043240 | 0.917262 | 67.62% | 49.4s
131 | 0.964116 | 1.024713 | 0.940865 | 68.38% | 49.4s
132 | 0.968457 | 1.021028 | 0.948512 | 68.33% | 49.4s
133 | 0.949549 | 1.030779 | 0.921195 | 67.93% | 49.4s
134 | 0.949649 | 0.997147 | 0.952366 | 68.78% | 49.4s
135 | 0.950957 | 1.062744 | 0.894813 | 67.08% | 49.4s
136 | 0.938671 | 0.996077 | 0.942368 | 69.43% | 49.4s
137 | 0.948955 | 1.028215 | 0.922916 | 68.32% | 49.4s
138 | 0.938366 | 1.003005 | 0.935555 | 68.67% | 49.4s
139 | 0.928982 | 1.009266 | 0.920453 | 68.43% | 49.4s
140 | 0.932137 | 0.993506 | 0.938231 | 68.85% | 49.4s
141 | 0.929865 | 1.013482 | 0.917495 | 67.95% | 49.4s
142 | 0.925320 | 1.004310 | 0.921349 | 69.17% | 49.4s
143 | 0.919835 | 1.014892 | 0.906337 | 68.02% | 49.4s
144 | 0.913581 | 0.990407 | 0.922429 | 69.02% | 49.4s
145 | 0.918547 | 0.993530 | 0.924528 | 69.13% | 49.4s
146 | 0.922195 | 0.983280 | 0.937876 | 69.47% | 49.4s
147 | 0.903920 | 0.980433 | 0.921959 | 69.34% | 49.4s
148 | 0.903605 | 0.992400 | 0.910526 | 69.16% | 49.4s
149 | 0.914595 | 1.009135 | 0.906316 | 68.32% | 49.4s
150 | 0.901173 | 1.001598 | 0.899735 | 68.89% | 49.4s
151 | 0.901760 | 1.001815 | 0.900127 | 68.78% | 49.4s
152 | 0.898278 | 1.001719 | 0.896736 | 68.90% | 49.4s
153 | 0.900486 | 0.981363 | 0.917587 | 69.12% | 49.4s
154 | 0.900371 | 0.990814 | 0.908719 | 69.11% | 49.4s
155 | 0.902822 | 0.991897 | 0.910197 | 69.03% | 49.4s
156 | 0.889485 | 0.985783 | 0.902314 | 69.17% | 49.4s
157 | 0.886818 | 0.988055 | 0.897539 | 69.84% | 49.4s
158 | 0.885700 | 0.976011 | 0.907470 | 69.47% | 49.4s
159 | 0.887387 | 0.965676 | 0.918928 | 69.70% | 49.4s
160 | 0.870504 | 0.985714 | 0.883120 | 69.04% | 49.4s
161 | 0.876103 | 0.971513 | 0.901792 | 69.61% | 49.4s
162 | 0.868559 | 0.979049 | 0.887145 | 69.53% | 49.4s
163 | 0.864062 | 0.974888 | 0.886320 | 69.83% | 49.4s
164 | 0.875984 | 0.985776 | 0.888624 | 69.26% | 49.4s
165 | 0.867108 | 0.980819 | 0.884066 | 69.82% | 49.4s
166 | 0.868281 | 0.970035 | 0.895103 | 69.92% | 49.4s
167 | 0.860283 | 0.969399 | 0.887439 | 70.12% | 49.4s
168 | 0.853265 | 0.961804 | 0.887151 | 70.04% | 49.4s
169 | 0.863831 | 0.962724 | 0.897277 | 69.93% | 49.4s
170 | 0.855107 | 0.974147 | 0.877801 | 69.68% | 49.4s
171 | 0.852806 | 0.996907 | 0.855452 | 69.15% | 49.4s
172 | 0.844058 | 0.974317 | 0.866307 | 69.78% | 49.4s
173 | 0.857668 | 0.986567 | 0.869346 | 69.10% | 49.4s
174 | 0.839153 | 0.978217 | 0.857840 | 69.38% | 49.4s
175 | 0.842256 | 0.970073 | 0.868240 | 70.07% | 49.4s
176 | 0.847033 | 0.962612 | 0.879932 | 70.39% | 49.4s
177 | 0.838393 | 0.976815 | 0.858293 | 69.58% | 49.4s
178 | 0.840892 | 0.955087 | 0.880436 | 70.47% | 49.4s
179 | 0.833573 | 0.984326 | 0.846846 | 69.57% | 49.4s
180 | 0.823489 | 0.975722 | 0.843979 | 70.17% | 49.4s
181 | 0.835713 | 0.964212 | 0.866732 | 70.14% | 49.4s
182 | 0.827478 | 0.965425 | 0.857112 | 70.24% | 49.4s
183 | 0.828168 | 0.964067 | 0.859035 | 70.12% | 49.4s
184 | 0.822066 | 0.933082 | 0.881022 | 71.05% | 49.4s
185 | 0.825839 | 0.952059 | 0.867424 | 70.44% | 49.4s
186 | 0.825012 | 0.948710 | 0.869615 | 70.74% | 49.4s
187 | 0.818954 | 0.954257 | 0.858211 | 70.64% | 49.4s
188 | 0.816428 | 0.952883 | 0.856797 | 70.75% | 49.4s
189 | 0.811046 | 0.952009 | 0.851931 | 70.58% | 49.4s
190 | 0.824382 | 0.953759 | 0.864350 | 71.17% | 49.4s
191 | 0.799628 | 0.952782 | 0.839257 | 70.87% | 49.4s
192 | 0.809060 | 0.961432 | 0.841516 | 70.72% | 49.4s
193 | 0.810497 | 0.965010 | 0.839885 | 70.30% | 49.4s
194 | 0.801688 | 0.966869 | 0.829159 | 70.20% | 49.4s
195 | 0.806631 | 0.944247 | 0.854259 | 70.34% | 49.4s
196 | 0.806761 | 0.946622 | 0.852252 | 70.64% | 49.4s
197 | 0.801285 | 0.952041 | 0.841650 | 70.86% | 49.4s
198 | 0.793883 | 0.948446 | 0.837036 | 70.65% | 49.4s
199 | 0.793430 | 0.938545 | 0.845383 | 71.33% | 49.4s
200 | 0.789917 | 0.959851 | 0.822958 | 69.81% | 49.4s
201 | 0.795303 | 0.932872 | 0.852532 | 70.77% | 49.4s
202 | 0.801301 | 0.943311 | 0.849456 | 70.60% | 49.4s
203 | 0.789800 | 0.937011 | 0.842893 | 70.75% | 49.4s
204 | 0.795032 | 0.934549 | 0.850712 | 71.13% | 49.4s
205 | 0.784078 | 0.937186 | 0.836630 | 71.03% | 49.4s
206 | 0.789595 | 0.950960 | 0.830314 | 70.19% | 49.4s
207 | 0.776141 | 0.937443 | 0.827934 | 70.88% | 49.4s
208 | 0.779075 | 0.960023 | 0.811517 | 70.14% | 49.4s
209 | 0.783410 | 0.942877 | 0.830871 | 71.00% | 49.4s
210 | 0.780557 | 0.945873 | 0.825224 | 70.56% | 49.4s
211 | 0.775252 | 0.934698 | 0.829415 | 70.97% | 49.4s
212 | 0.778176 | 0.933844 | 0.833304 | 70.93% | 49.4s
213 | 0.772479 | 0.927985 | 0.832427 | 70.98% | 49.4s
214 | 0.768254 | 0.935243 | 0.821449 | 71.06% | 49.4s
215 | 0.766701 | 0.948808 | 0.808067 | 70.51% | 49.4s
216 | 0.770430 | 0.951292 | 0.809878 | 70.84% | 49.4s
217 | 0.764170 | 0.926804 | 0.824522 | 71.01% | 49.4s
218 | 0.758174 | 0.952295 | 0.796154 | 70.91% | 49.4s
219 | 0.759573 | 0.940628 | 0.807518 | 70.97% | 49.4s
220 | 0.760644 | 0.930357 | 0.817583 | 71.33% | 49.4s
221 | 0.770776 | 0.932787 | 0.826315 | 71.09% | 49.4s
222 | 0.765858 | 0.931676 | 0.822022 | 71.21% | 49.4s
223 | 0.750636 | 0.944918 | 0.794393 | 71.17% | 49.4s
224 | 0.743894 | 0.946147 | 0.786235 | 70.71% | 49.4s
225 | 0.748174 | 0.931108 | 0.803530 | 71.08% | 49.4s
226 | 0.752027 | 0.925636 | 0.812444 | 71.04% | 49.4s
227 | 0.753516 | 0.933871 | 0.806874 | 71.45% | 49.4s
228 | 0.740988 | 0.929481 | 0.797207 | 71.23% | 49.4s
229 | 0.750026 | 0.957090 | 0.783652 | 70.18% | 49.4s
230 | 0.744700 | 0.938833 | 0.793219 | 71.42% | 49.4s
231 | 0.738217 | 0.920117 | 0.802308 | 71.82% | 49.4s
232 | 0.743280 | 0.956636 | 0.776973 | 70.38% | 49.4s
233 | 0.741437 | 0.934517 | 0.793391 | 71.61% | 49.4s
234 | 0.741129 | 0.929030 | 0.797745 | 71.75% | 49.4s
235 | 0.747152 | 0.922186 | 0.810197 | 71.96% | 49.4s
236 | 0.739739 | 0.945645 | 0.782259 | 71.45% | 49.4s
237 | 0.735689 | 0.928732 | 0.792143 | 71.85% | 49.4s
238 | 0.744977 | 0.934543 | 0.797157 | 70.96% | 49.4s
239 | 0.737045 | 0.957809 | 0.769511 | 70.61% | 49.4s
240 | 0.738031 | 0.935736 | 0.788717 | 71.28% | 49.4s
241 | 0.724268 | 0.942765 | 0.768238 | 71.27% | 49.4s
242 | 0.742995 | 0.933880 | 0.795599 | 71.40% | 49.4s
243 | 0.732500 | 0.929009 | 0.788474 | 71.75% | 49.4s
244 | 0.720823 | 0.934344 | 0.771476 | 72.01% | 49.4s
245 | 0.724066 | 0.948760 | 0.763171 | 70.95% | 49.4s
246 | 0.717609 | 0.959100 | 0.748211 | 70.98% | 49.4s
247 | 0.719857 | 0.934743 | 0.770112 | 71.69% | 49.4s
248 | 0.721578 | 0.932200 | 0.774059 | 71.78% | 49.4s
249 | 0.720704 | 0.934020 | 0.771615 | 71.85% | 49.4s
250 | 0.709781 | 0.936332 | 0.758044 | 71.91% | 49.4s
251 | 0.721079 | 0.935681 | 0.770646 | 71.49% | 49.4s
252 | 0.713137 | 0.923818 | 0.771945 | 71.71% | 49.4s
253 | 0.710792 | 0.930897 | 0.763556 | 71.29% | 49.4s
254 | 0.720386 | 0.919109 | 0.783788 | 72.02% | 49.4s
255 | 0.707993 | 0.928463 | 0.762542 | 71.71% | 49.4s
256 | 0.709306 | 0.924958 | 0.766852 | 71.99% | 49.4s
257 | 0.708842 | 0.927061 | 0.764612 | 71.89% | 49.4s
258 | 0.703578 | 0.910051 | 0.773119 | 72.07% | 49.4s
259 | 0.705597 | 0.933422 | 0.755925 | 71.64% | 49.4s
260 | 0.699022 | 0.917306 | 0.762038 | 71.91% | 49.4s
261 | 0.701088 | 0.931266 | 0.752833 | 71.45% | 49.4s
262 | 0.703824 | 0.926369 | 0.759767 | 71.79% | 49.4s
263 | 0.706756 | 0.915811 | 0.771727 | 72.22% | 49.4s
264 | 0.699703 | 0.942527 | 0.742370 | 71.31% | 49.4s
265 | 0.699280 | 0.929862 | 0.752025 | 71.80% | 49.4s
266 | 0.697540 | 0.926000 | 0.753283 | 72.20% | 49.4s
267 | 0.693586 | 0.920260 | 0.753686 | 72.55% | 49.4s
268 | 0.691408 | 0.920733 | 0.750932 | 72.43% | 49.4s
269 | 0.690166 | 0.937802 | 0.735940 | 71.21% | 49.4s
270 | 0.686760 | 0.932926 | 0.736135 | 71.71% | 49.4s
271 | 0.693465 | 0.921612 | 0.752448 | 71.95% | 49.4s
272 | 0.689526 | 0.929479 | 0.741842 | 71.71% | 49.4s
273 | 0.687685 | 0.916946 | 0.749974 | 72.30% | 49.4s
274 | 0.680994 | 0.940010 | 0.724454 | 71.30% | 49.4s
275 | 0.685742 | 0.937159 | 0.731725 | 71.24% | 49.4s
276 | 0.681236 | 0.930722 | 0.731943 | 71.96% | 49.4s
277 | 0.683685 | 0.928916 | 0.736003 | 72.34% | 49.4s
278 | 0.670316 | 0.928475 | 0.721953 | 72.50% | 49.4s
279 | 0.677242 | 0.933321 | 0.725626 | 71.94% | 49.4s
280 | 0.688341 | 0.922849 | 0.745887 | 71.95% | 49.4s
281 | 0.672625 | 0.933088 | 0.720858 | 71.79% | 49.4s
282 | 0.673045 | 0.918513 | 0.732755 | 71.81% | 49.4s
283 | 0.669932 | 0.910255 | 0.735982 | 72.65% | 49.4s
284 | 0.674591 | 0.928971 | 0.726170 | 71.57% | 49.4s
285 | 0.676017 | 0.909442 | 0.743332 | 72.51% | 49.4s
286 | 0.677402 | 0.928103 | 0.729878 | 71.90% | 49.4s
287 | 0.674686 | 0.926379 | 0.728304 | 71.96% | 49.4s
288 | 0.670709 | 0.912896 | 0.734704 | 72.18% | 49.4s
289 | 0.655433 | 0.939453 | 0.697675 | 71.68% | 49.4s
290 | 0.660382 | 0.925145 | 0.713814 | 72.31% | 49.4s
291 | 0.673339 | 0.915493 | 0.735493 | 72.11% | 49.4s
292 | 0.661820 | 0.944199 | 0.700933 | 71.59% | 49.4s
293 | 0.669590 | 0.913632 | 0.732889 | 72.68% | 49.4s
294 | 0.655681 | 0.921461 | 0.711567 | 72.82% | 49.4s
295 | 0.658065 | 0.937396 | 0.702014 | 72.42% | 49.4s
296 | 0.652436 | 0.921429 | 0.708070 | 72.23% | 49.4s
297 | 0.664943 | 0.927241 | 0.717121 | 71.85% | 49.4s
298 | 0.650178 | 0.923008 | 0.704412 | 72.43% | 49.4s
299 | 0.655182 | 0.915029 | 0.716023 | 72.06% | 49.4s
300 | 0.650463 | 0.910636 | 0.714294 | 71.94% | 49.4s
301 | 0.643960 | 0.927932 | 0.693973 | 71.76% | 49.4s
302 | 0.650558 | 0.937800 | 0.693707 | 71.64% | 49.4s
303 | 0.659555 | 0.932951 | 0.706956 | 72.18% | 49.4s
304 | 0.660771 | 0.917742 | 0.719997 | 72.18% | 49.4s
305 | 0.651557 | 0.922554 | 0.706254 | 71.96% | 49.4s
306 | 0.652182 | 0.916979 | 0.711228 | 71.98% | 49.4s
307 | 0.637614 | 0.915656 | 0.696347 | 72.41% | 49.4s
308 | 0.633425 | 0.933267 | 0.678718 | 71.58% | 49.4s
309 | 0.631083 | 0.926244 | 0.681336 | 71.89% | 49.4s
310 | 0.639479 | 0.922108 | 0.693497 | 71.93% | 49.4s
311 | 0.641668 | 0.941190 | 0.681763 | 72.15% | 49.4s
312 | 0.640190 | 0.932877 | 0.686253 | 72.21% | 49.4s
313 | 0.640436 | 0.932459 | 0.686825 | 71.77% | 49.4s
314 | 0.637780 | 0.938391 | 0.679652 | 71.83% | 49.4s
315 | 0.634987 | 0.914376 | 0.694448 | 72.23% | 49.4s
316 | 0.629998 | 0.928894 | 0.678224 | 71.84% | 49.4s
317 | 0.634883 | 0.915856 | 0.693212 | 72.60% | 49.4s
318 | 0.634878 | 0.917995 | 0.691592 | 72.30% | 49.4s
319 | 0.637483 | 0.917590 | 0.694736 | 72.42% | 49.4s
320 | 0.637772 | 0.919927 | 0.693285 | 72.37% | 49.4s
321 | 0.638844 | 0.942496 | 0.677821 | 72.44% | 49.4s
322 | 0.637811 | 0.928127 | 0.687203 | 72.14% | 49.4s
323 | 0.631586 | 0.942636 | 0.670021 | 72.14% | 49.4s
324 | 0.625350 | 0.923436 | 0.677199 | 72.34% | 49.4s
325 | 0.625647 | 0.934891 | 0.669219 | 72.54% | 49.4s
326 | 0.627671 | 0.936381 | 0.670316 | 72.12% | 49.4s
327 | 0.630567 | 0.936576 | 0.673269 | 72.17% | 49.4s
328 | 0.627509 | 0.936075 | 0.670362 | 72.23% | 49.4s
329 | 0.616563 | 0.946040 | 0.651731 | 71.92% | 49.4s
330 | 0.620979 | 0.928242 | 0.668984 | 72.61% | 49.4s
331 | 0.623767 | 0.914326 | 0.682215 | 72.77% | 49.4s
332 | 0.628614 | 0.940346 | 0.668493 | 71.85% | 49.4s
333 | 0.623224 | 0.931926 | 0.668749 | 72.41% | 49.4s
334 | 0.623106 | 0.926642 | 0.672434 | 72.35% | 49.4s
335 | 0.606938 | 0.933676 | 0.650052 | 71.60% | 49.4s
336 | 0.613259 | 0.927003 | 0.661550 | 72.35% | 49.4s
Early stopping.
Best valid loss was 0.909442 at epoch 285.
Out[32]:
NeuralNet(X_tensor_type=<function tensor4 at 0x7fe1e101e2a8>,
batch_iterator_test=<nolearn.lasagne.BatchIterator object at 0x7fe1d394f150>,
batch_iterator_train=<__main__.FlipBatchIterator object at 0x7fdfe24c4310>,
conv1_filter_size=(5, 5),
conv1_nonlinearity=<function rectify at 0x7fe1d847c938>,
conv1_num_filters=128, conv1_pad=2, conv1_strides=(4, 4),
conv2_filter_size=(3, 3),
conv2_nonlinearity=<function rectify at 0x7fe1d847c938>,
conv2_num_filters=128, conv2_pad=2, conv3_filter_size=(3, 3),
conv3_nonlinearity=<function rectify at 0x7fe1d847c938>,
conv3_num_filters=256, conv3_pad=1, dropout1_p=0.3, dropout2_p=0.5,
dropout3_p=0.5, eval_size=0.2,
hidden1_nonlinearity=<function rectify at 0x7fe1d847c938>,
hidden1_num_units=512,
hidden2_nonlinearity=<function rectify at 0x7fe1d847c938>,
hidden2_num_units=1024,
hidden3_nonlinearity=<function rectify at 0x7fe1d847c938>,
hidden3_num_units=1024, input_shape=(None, 1, 96, 96),
layers=[('input', <class 'lasagne.layers.input.InputLayer'>), ('conv1', <class 'lasagne.layers.cuda_convnet.Conv2DCCLayer'>), ('pool1', <class 'lasagne.layers.cuda_convnet.MaxPool2DCCLayer'>), ('conv2', <class 'lasagne.layers.cuda_convnet.Conv2DCCLayer'>), ('conv3', <class 'lasagne.layers.cuda_convn...<class 'lasagne.layers.noise.DropoutLayer'>), ('output', <class 'lasagne.layers.dense.DenseLayer'>)],
loss=<function negative_log_likelihood at 0x7fe1d3fc7410>,
max_epochs=500, more_params={},
on_epoch_finished=[<__main__.AdjustVariable object at 0x7fe145e240d0>, <__main__.AdjustVariable object at 0x7fdfdb92c8d0>, <__main__.EarlyStopping object at 0x7fdfdb92c0d0>],
on_training_finished=(),
output_nonlinearity=<theano.tensor.nnet.nnet.Softmax object at 0x7fe1e0c65b50>,
output_num_units=121, pool1_ds=(3, 3), pool1_strides=(2, 2),
pool3_ds=(3, 3), pool3_strides=(2, 2), regression=False,
test_size=0.1, update=<function nesterov_momentum at 0x7fe1d3fc70c8>,
update_learning_rate=array(0.003353707492351532, dtype=float32),
update_momentum=array(0.9664629101753235, dtype=float32),
use_label_encoder=True, verbose=2,
y_tensor_type=TensorType(int32, vector))