Shape of merged data (322, 40) .
After merge out of [ 12880 ] [ 688 ] data points are missing.
Number of NaN after time interpolation: 128
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
1 142
-1 94
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
-1 43
1 43
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 0.872093023256
Accuracy for SVM Classifier 0.744186046512
Accuracy for KNN Classifier 0.53488372093
Accuracy for RF Classifier 1.0
Best Parameter SVC {'C': 10, 'kernel': 'linear'}
Accuracy for SVM Classifier 0.5
Accuracy for SVM Classifier 0.744186046512
Benchmark Return [-1.80]%
LR Return [78.00]%
SVC Return [-6.27]%
RF Return [58.53]%
Shape of merged data (44, 40) .
After merge out of [ 1760 ] [ 184 ] data points are missing.
Number of NaN after time interpolation: 123
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
1 24
-1 8
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
-1 6
1 6
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 0.5
Accuracy for SVM Classifier 0.5
Accuracy for KNN Classifier 0.5
Accuracy for RF Classifier 1.0
Best Parameter SVC {'C': 1, 'kernel': 'linear'}
Accuracy for SVM Classifier 0.5
Accuracy for SVM Classifier 0.5
Benchmark Return [-3.47]%
LR Return [-13.78]%
SVC Return [-13.78]%
RF Return [21.93]%
Shape of merged data (43, 40) .
After merge out of [ 1720 ] [ 120 ] data points are missing.
Number of NaN after time interpolation: 94
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
-1 18
1 15
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
1 6
-1 4
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 0.4
Accuracy for SVM Classifier 0.4
Accuracy for KNN Classifier 0.4
Accuracy for RF Classifier 1.0
Best Parameter SVC {'C': 1, 'kernel': 'linear'}
Accuracy for SVM Classifier 0.4
Accuracy for SVM Classifier 0.4
Benchmark Return [-0.13]%
LR Return [-0.02]%
SVC Return [-0.02]%
RF Return [28.66]%
Shape of merged data (65, 40) .
After merge out of [ 2600 ] [ 168 ] data points are missing.
Number of NaN after time interpolation: 88
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
-1 29
1 24
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
1 7
-1 5
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 0.666666666667
Accuracy for SVM Classifier 0.583333333333
Accuracy for KNN Classifier 0.666666666667
Accuracy for RF Classifier 1.0
Best Parameter SVC {'C': 1, 'kernel': 'linear'}
Accuracy for SVM Classifier 0.416666666667
Accuracy for SVM Classifier 0.583333333333
Benchmark Return [-0.37]%
LR Return [0.73]%
SVC Return [0.73]%
RF Return [-0.76]%
Shape of merged data (55, 40) .
After merge out of [ 2200 ] [ 216 ] data points are missing.
Number of NaN after time interpolation: 80
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
1 30
-1 14
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
-1 7
1 4
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 0.818181818182
Accuracy for SVM Classifier 0.454545454545
Accuracy for KNN Classifier 0.363636363636
Accuracy for RF Classifier 0.909090909091
Best Parameter SVC {'C': 1, 'kernel': 'linear'}
Accuracy for SVM Classifier 0.363636363636
Accuracy for SVM Classifier 0.454545454545
Benchmark Return [-1.97]%
LR Return [5.20]%
SVC Return [-7.82]%
RF Return [-2.45]%
Shape of merged data (65, 40) .
After merge out of [ 2600 ] [ 232 ] data points are missing.
Number of NaN after time interpolation: 82
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
1 32
-1 26
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
1 5
-1 2
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 0.857142857143
Accuracy for SVM Classifier 0.714285714286
Accuracy for KNN Classifier 0.714285714286
Accuracy for RF Classifier 1.0
Best Parameter SVC {'C': 1, 'kernel': 'linear'}
Accuracy for SVM Classifier 0.714285714286
Accuracy for SVM Classifier 0.714285714286
Benchmark Return [1.21]%
LR Return [6.40]%
SVC Return [-0.59]%
RF Return [8.78]%
Shape of merged data (44, 40) .
After merge out of [ 1760 ] [ 120 ] data points are missing.
Number of NaN after time interpolation: 80
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
-1 19
1 16
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
-1 6
1 3
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 0.666666666667
Accuracy for SVM Classifier 0.555555555556
Accuracy for KNN Classifier 0.666666666667
Accuracy for RF Classifier 0.888888888889
Best Parameter SVC {'C': 1, 'kernel': 'linear'}
Accuracy for SVM Classifier 0.666666666667
Accuracy for SVM Classifier 0.555555555556
Benchmark Return [0.41]%
LR Return [2.56]%
SVC Return [1.22]%
RF Return [3.68]%
Shape of merged data (43, 40) .
After merge out of [ 1720 ] [ 112 ] data points are missing.
Number of NaN after time interpolation: 92
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
-1 19
1 12
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
1 9
-1 3
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 0.833333333333
Accuracy for SVM Classifier 0.833333333333
Accuracy for KNN Classifier 0.25
Accuracy for RF Classifier 0.583333333333
Best Parameter SVC {'C': 1, 'kernel': 'rbf'}
Accuracy for SVM Classifier 0.25
Accuracy for SVM Classifier 0.833333333333
Benchmark Return [4.42]%
LR Return [4.89]%
SVC Return [-18.60]%
RF Return [16.13]%
Shape of merged data (45, 40) .
After merge out of [ 1800 ] [ 104 ] data points are missing.
Number of NaN after time interpolation: 82
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
1 18
-1 15
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
-1 6
1 6
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 1.0
Accuracy for SVM Classifier 1.0
Accuracy for KNN Classifier 0.666666666667
Accuracy for RF Classifier 1.0
Best Parameter SVC {'C': 1, 'kernel': 'linear'}
Accuracy for SVM Classifier 0.5
Accuracy for SVM Classifier 1.0
Benchmark Return [-0.87]%
LR Return [27.98]%
SVC Return [27.98]%
RF Return [27.98]%
Shape of merged data (43, 40) .
After merge out of [ 1720 ] [ 96 ] data points are missing.
Number of NaN after time interpolation: 88
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
-1 17
1 16
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
-1 6
1 4
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 0.4
Accuracy for SVM Classifier 0.6
Accuracy for KNN Classifier 0.8
Accuracy for RF Classifier 0.7
Best Parameter SVC {'C': 1, 'kernel': 'linear'}
Accuracy for SVM Classifier 0.6
Accuracy for SVM Classifier 0.6
Benchmark Return [-5.61]%
LR Return [15.32]%
SVC Return [25.98]%
RF Return [21.99]%
Shape of merged data (43, 40) .
After merge out of [ 1720 ] [ 152 ] data points are missing.
Number of NaN after time interpolation: 80
Number of NaN after mean interpolation: 0
Positive and negative movement in train data outcome.
-1 18
1 13
Name: UpDown, dtype: int64
Positive and negative movement in test data outcome.
1 7
-1 5
Name: UpDown, dtype: int64
Accuracy for Logistic Classifier 0.5
Accuracy for SVM Classifier 0.916666666667
Accuracy for KNN Classifier 0.5
Accuracy for RF Classifier 1.0
Best Parameter SVC {'C': 1, 'kernel': 'rbf'}
Accuracy for SVM Classifier 0.416666666667
Accuracy for SVM Classifier 0.916666666667
Benchmark Return [1.53]%
LR Return [9.15]%
SVC Return [-3.60]%
RF Return [2.41]%
Training Data from (2014-01-01 to 2014-11-27) Test Data (2014-11-27 to 2015-03-27) Benchmark Return [-1.80]% LR Return [78.00]% SVC Return [-6.27]% RF Return [58.53]%
Training Data from (2012-01-01 to 2012-02-15) Test Data (2012-02-15 to 2012-03-01) Benchmark Return [-3.47]% LR Return [-13.78]% SVC Return [-13.78]% RF Return [21.93]%
Training Data from (2013-05-01 to 2013-06-15) Test Data (2013-06-15 to 2013-06-30) Benchmark Return [-0.13]% LR Return [-0.02]% SVC Return [-0.02]% RF Return [28.66]%
Training Data from (2015-07-01 to 2015-09-14) Test Data (2015-09-14 to 2015-09-29) Benchmark Return [-0.37]% LR Return [0.73]% SVC Return [0.73]% RF Return [-0.76]%
Training Data from (2010-02-01 to 2010-04-02) Test Data (2010-04-02 to 2010-04-17) Benchmark Return [-1.97]% LR Return [5.20]% SVC Return [-7.82]% RF Return [-2.45]%
Training Data from (2011-11-15 to 2012-02-03) Test Data (2012-02-03 to 2012-02-13) Benchmark Return [1.21]% LR Return [6.40]% SVC Return [-0.59]% RF Return [8.78]%
Training Data from (2015-02-01 to 2015-03-23) Test Data (2015-03-23 to 2015-04-02) Benchmark Return [0.41]% LR Return [2.56]% SVC Return [1.22]% RF Return [3.68]%
Training Data from (2015-05-01 to 2015-06-15) Test Data (2015-06-15 to 2015-06-30) Benchmark Return [4.42]% LR Return [4.89]% SVC Return [-18.60]% RF Return [16.13]%
Training Data from (2015-06-01 to 2015-07-16) Test Data (2015-07-16 to 2015-07-31) Benchmark Return [-0.87]% LR Return [27.98]% SVC Return [27.98]% RF Return [27.98]%
Training Data from (2015-07-01 to 2015-08-15) Test Data (2015-08-15 to 2015-08-30) Benchmark Return [-5.61]% LR Return [15.32]% SVC Return [25.98]% RF Return [21.99]%
Training Data from (2015-08-01 to 2015-09-15) Test Data (2015-09-15 to 2015-09-30) Benchmark Return [1.53]% LR Return [9.15]% SVC Return [-3.60]% RF Return [2.41]%