In [1]:
import numpy as np
import scipy.sparse
import pickle
import xgboost as xgb
import time

In [7]:
ls ../data/mushroom/


ACE2.jpg  Agaricus_californicus(P).jpg            agaricus.txt.test
ACE.jpg   Agaricus campestris 1 Michael Beug.jpg  agaricus.txt.train
ACP.jpg   Agaricus_campestris(E).jpg              Agaricus_xanthoderma(P).jpg

In [2]:
dtrain = xgb.DMatrix('../data/mushroom/agaricus.txt.train')
dtest = xgb.DMatrix('../data/mushroom/agaricus.txt.test')

In [3]:
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }

In [6]:
watchlist  = [(dtest,'eval'), (dtrain,'train')]
num_round = 2
start = time.clock()
bst =xgb.train(param, dtrain, num_round, watchlist)
print time.clock() - start


0.019947
[0]	eval-error:0.042831	train-error:0.046522
[1]	eval-error:0.021726	train-error:0.022263

In [7]:
preds = bst.predict(dtest)

In [8]:
preds


Out[8]:
array([ 0.28583017,  0.92392391,  0.28583017, ...,  0.92392391,
        0.05169873,  0.92392391], dtype=float32)

In [ ]: