In [1]:
import numpy as np
import scipy.sparse
import pickle
import xgboost as xgb
import time
In [7]:
ls ../data/mushroom/
In [2]:
dtrain = xgb.DMatrix('../data/mushroom/agaricus.txt.train')
dtest = xgb.DMatrix('../data/mushroom/agaricus.txt.test')
In [3]:
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
In [6]:
watchlist = [(dtest,'eval'), (dtrain,'train')]
num_round = 2
start = time.clock()
bst =xgb.train(param, dtrain, num_round, watchlist)
print time.clock() - start
In [7]:
preds = bst.predict(dtest)
In [8]:
preds
Out[8]:
In [ ]: