Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
#data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7fe949dbea58>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [13]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[13]:
<matplotlib.image.AxesImage at 0x7fe91d25d748>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [14]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.1.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [15]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    
    inputs = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name = 'input')
    z = tf.placeholder(tf.float32, (None, z_dim), name = 'z')
    lr = tf.placeholder(tf.float32, name = 'learning_rate')

    return inputs, z, lr


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [16]:
def discriminator(images, reuse=False, alpha = 0.2):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    with tf.variable_scope('discriminator', reuse=reuse):
        
        x1 = tf.layers.conv2d(images, filters=64, kernel_size=5, strides=2,padding='SAME')
        #no batch normalization on 1st layer
        relux1 = tf.maximum(alpha*x1, x1)
        #14x14x64
        
        x2 = tf.layers.conv2d(relux1, filters=128, kernel_size=5, strides=2,padding='SAME')
        batchx2 = tf.layers.batch_normalization(x2, training=True)
        relux2 = tf.maximum(alpha*batchx2, batchx2)
        #7x7x128
        
        x3 = tf.layers.conv2d(relux2, filters=256, kernel_size=5, strides=2,padding='SAME')
        batchx3 = tf.layers.batch_normalization(x3, training=True)
        relux3 = tf.maximum(alpha*batchx3, batchx3)
        #4x4x256
        
        x4 = tf.reshape(relux3, (-1, 4*4* 256 ))
        logits = tf.layers.dense(x4, 1)
        output = tf.sigmoid(logits)
        
        

    return output, logits

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [17]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    alpha=0.2
    reuse = not is_train
    with tf.variable_scope('generator', reuse=reuse):
        
        x1 = tf.layers.dense(z, 7*7*512)
        x1 = tf.reshape(x1, (-1, 7,7,512))
        x1 = tf.layers.batch_normalization(x1, training=is_train)
        relux1 = tf.maximum(alpha*x1, x1)
        #7 x 7 x 512 now
        
        x2 = tf.layers.conv2d_transpose(relux1, filters=256, kernel_size=5, strides=1, padding='SAME')
        x2 = tf.layers.batch_normalization(x2, training=is_train)
        relux2 = tf.maximum(alpha*x2, x2)
        # 7 x 7 x 256 now

        
        x3 = tf.layers.conv2d_transpose(relux2, filters=128, kernel_size=5, strides=2, padding='SAME')
        x3 = tf.layers.batch_normalization(x3, training=is_train)
        relux3 = tf.maximum(alpha*x3, x3)
        # 14 x 14 128 now
        
        # Output layer, 28x28xout_channel_dim
        logits = tf.layers.conv2d_transpose(relux3, filters=out_channel_dim, kernel_size=5, strides=2, padding='SAME')
        out = tf.tanh(logits)
        
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [18]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """

    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake
    
    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [19]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    
    # Get weights and bias to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [20]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [21]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    _, img_width, img_height, channels = data_shape

    input_real, input_z, lr = model_inputs(img_width, img_height, channels, z_dim)
    d_loss, g_loss = model_loss(input_real, input_z, channels)
    d_train_opt, g_train_opt = model_opt(d_loss, g_loss, lr, beta1)
    
    steps = 0
    generator_output_every = 100
    print_output_every = 2

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):

                #images given are between -0.5 to 0.5. for tanh should be rescaled to -1,1
                batch_images = batch_images * 2
                steps += 1
                
                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                
                # Run optimizers
                _ = sess.run(d_train_opt, feed_dict={input_real: batch_images, input_z: batch_z, lr: learning_rate})
                _ = sess.run(g_train_opt, feed_dict={input_real: batch_images, input_z: batch_z, lr: learning_rate})


                if steps % print_output_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})

                    print("Epoch {}/{}...".format(epoch_i+1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                
                if steps % generator_output_every == 0:
                    show_generator_output(sess, 16, input_z, channels, data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [22]:
print(mnist_dataset.shape)


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-22-e7f97ed24f2c> in <module>()
----> 1 print(mnist_dataset.shape)

NameError: name 'mnist_dataset' is not defined

In [25]:
batch_size = 64
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2... Discriminator Loss: 4.9329... Generator Loss: 0.0119
Epoch 1/2... Discriminator Loss: 2.5072... Generator Loss: 0.2459
Epoch 1/2... Discriminator Loss: 1.4016... Generator Loss: 0.5353
Epoch 1/2... Discriminator Loss: 2.0263... Generator Loss: 0.2339
Epoch 1/2... Discriminator Loss: 1.6375... Generator Loss: 0.3250
Epoch 1/2... Discriminator Loss: 1.4130... Generator Loss: 0.4232
Epoch 1/2... Discriminator Loss: 1.3452... Generator Loss: 0.4840
Epoch 1/2... Discriminator Loss: 0.8518... Generator Loss: 0.9507
Epoch 1/2... Discriminator Loss: 0.9021... Generator Loss: 0.8227
Epoch 1/2... Discriminator Loss: 1.1249... Generator Loss: 0.5314
Epoch 1/2... Discriminator Loss: 2.0480... Generator Loss: 0.1877
Epoch 1/2... Discriminator Loss: 1.6588... Generator Loss: 0.2706
Epoch 1/2... Discriminator Loss: 1.1249... Generator Loss: 0.6277
Epoch 1/2... Discriminator Loss: 2.5114... Generator Loss: 0.1112
Epoch 1/2... Discriminator Loss: 1.9565... Generator Loss: 0.2411
Epoch 1/2... Discriminator Loss: 2.5877... Generator Loss: 0.1297
Epoch 1/2... Discriminator Loss: 2.7595... Generator Loss: 0.1088
Epoch 1/2... Discriminator Loss: 1.8972... Generator Loss: 0.2866
Epoch 1/2... Discriminator Loss: 1.5991... Generator Loss: 0.4153
Epoch 1/2... Discriminator Loss: 1.4241... Generator Loss: 0.4816
Epoch 1/2... Discriminator Loss: 2.0980... Generator Loss: 0.2022
Epoch 1/2... Discriminator Loss: 2.2765... Generator Loss: 0.2065
Epoch 1/2... Discriminator Loss: 2.0209... Generator Loss: 0.2257
Epoch 1/2... Discriminator Loss: 2.0163... Generator Loss: 0.2814
Epoch 1/2... Discriminator Loss: 1.7063... Generator Loss: 0.3582
Epoch 1/2... Discriminator Loss: 1.0742... Generator Loss: 0.6605
Epoch 1/2... Discriminator Loss: 1.2862... Generator Loss: 0.7034
Epoch 1/2... Discriminator Loss: 1.7866... Generator Loss: 0.4208
Epoch 1/2... Discriminator Loss: 1.4770... Generator Loss: 0.5515
Epoch 1/2... Discriminator Loss: 1.4054... Generator Loss: 0.4650
Epoch 1/2... Discriminator Loss: 1.4191... Generator Loss: 0.5377
Epoch 1/2... Discriminator Loss: 1.8146... Generator Loss: 0.5696
Epoch 1/2... Discriminator Loss: 1.7248... Generator Loss: 0.3281
Epoch 1/2... Discriminator Loss: 1.4423... Generator Loss: 0.4095
Epoch 1/2... Discriminator Loss: 1.0651... Generator Loss: 1.0950
Epoch 1/2... Discriminator Loss: 1.2006... Generator Loss: 0.8144
Epoch 1/2... Discriminator Loss: 1.2932... Generator Loss: 0.8453
Epoch 1/2... Discriminator Loss: 1.0860... Generator Loss: 0.9363
Epoch 1/2... Discriminator Loss: 1.1821... Generator Loss: 1.9843
Epoch 1/2... Discriminator Loss: 1.2538... Generator Loss: 1.4864
Epoch 1/2... Discriminator Loss: 1.2533... Generator Loss: 1.0833
Epoch 1/2... Discriminator Loss: 0.9925... Generator Loss: 0.9195
Epoch 1/2... Discriminator Loss: 1.1485... Generator Loss: 0.7492
Epoch 1/2... Discriminator Loss: 1.4478... Generator Loss: 1.0804
Epoch 1/2... Discriminator Loss: 1.0799... Generator Loss: 1.7302
Epoch 1/2... Discriminator Loss: 1.1705... Generator Loss: 0.8591
Epoch 1/2... Discriminator Loss: 1.3971... Generator Loss: 0.5819
Epoch 1/2... Discriminator Loss: 1.6378... Generator Loss: 0.3790
Epoch 1/2... Discriminator Loss: 1.4841... Generator Loss: 0.4781
Epoch 1/2... Discriminator Loss: 1.4128... Generator Loss: 0.5358
Epoch 1/2... Discriminator Loss: 1.1326... Generator Loss: 0.8902
Epoch 1/2... Discriminator Loss: 1.0357... Generator Loss: 1.1497
Epoch 1/2... Discriminator Loss: 0.8733... Generator Loss: 1.3020
Epoch 1/2... Discriminator Loss: 1.3220... Generator Loss: 0.6586
Epoch 1/2... Discriminator Loss: 1.5832... Generator Loss: 0.4273
Epoch 1/2... Discriminator Loss: 1.3845... Generator Loss: 0.5076
Epoch 1/2... Discriminator Loss: 1.3602... Generator Loss: 0.4711
Epoch 1/2... Discriminator Loss: 1.1270... Generator Loss: 0.7845
Epoch 1/2... Discriminator Loss: 1.3826... Generator Loss: 0.8324
Epoch 1/2... Discriminator Loss: 1.3515... Generator Loss: 0.7757
Epoch 1/2... Discriminator Loss: 1.2119... Generator Loss: 0.7822
Epoch 1/2... Discriminator Loss: 1.0972... Generator Loss: 0.6534
Epoch 1/2... Discriminator Loss: 1.5374... Generator Loss: 0.3641
Epoch 1/2... Discriminator Loss: 1.4074... Generator Loss: 0.5285
Epoch 1/2... Discriminator Loss: 1.2958... Generator Loss: 0.7078
Epoch 1/2... Discriminator Loss: 1.2236... Generator Loss: 0.6578
Epoch 1/2... Discriminator Loss: 0.9688... Generator Loss: 1.0907
Epoch 1/2... Discriminator Loss: 1.0135... Generator Loss: 0.9412
Epoch 1/2... Discriminator Loss: 0.9529... Generator Loss: 1.1741
Epoch 1/2... Discriminator Loss: 1.1531... Generator Loss: 1.5744
Epoch 1/2... Discriminator Loss: 1.3874... Generator Loss: 1.5600
Epoch 1/2... Discriminator Loss: 1.0386... Generator Loss: 1.4740
Epoch 1/2... Discriminator Loss: 0.9127... Generator Loss: 1.0966
Epoch 1/2... Discriminator Loss: 1.2318... Generator Loss: 0.5285
Epoch 1/2... Discriminator Loss: 1.1359... Generator Loss: 0.6561
Epoch 1/2... Discriminator Loss: 1.2430... Generator Loss: 0.7938
Epoch 1/2... Discriminator Loss: 1.1884... Generator Loss: 1.2421
Epoch 1/2... Discriminator Loss: 1.1136... Generator Loss: 1.6980
Epoch 1/2... Discriminator Loss: 0.7847... Generator Loss: 1.5632
Epoch 1/2... Discriminator Loss: 1.0256... Generator Loss: 1.3840
Epoch 1/2... Discriminator Loss: 1.2540... Generator Loss: 1.5981
Epoch 1/2... Discriminator Loss: 1.2266... Generator Loss: 1.4028
Epoch 1/2... Discriminator Loss: 0.9921... Generator Loss: 1.4044
Epoch 1/2... Discriminator Loss: 0.8729... Generator Loss: 1.4163
Epoch 1/2... Discriminator Loss: 1.0390... Generator Loss: 1.7163
Epoch 1/2... Discriminator Loss: 0.9974... Generator Loss: 1.7454
Epoch 1/2... Discriminator Loss: 1.1585... Generator Loss: 1.4212
Epoch 1/2... Discriminator Loss: 1.1471... Generator Loss: 1.1574
Epoch 1/2... Discriminator Loss: 1.0831... Generator Loss: 1.1570
Epoch 1/2... Discriminator Loss: 1.0156... Generator Loss: 1.1410
Epoch 1/2... Discriminator Loss: 0.9228... Generator Loss: 1.2936
Epoch 1/2... Discriminator Loss: 1.0336... Generator Loss: 1.0755
Epoch 1/2... Discriminator Loss: 1.0051... Generator Loss: 0.9015
Epoch 1/2... Discriminator Loss: 1.0834... Generator Loss: 0.7690
Epoch 1/2... Discriminator Loss: 0.9557... Generator Loss: 1.1744
Epoch 1/2... Discriminator Loss: 1.1967... Generator Loss: 1.9352
Epoch 1/2... Discriminator Loss: 1.2252... Generator Loss: 2.4111
Epoch 1/2... Discriminator Loss: 1.2099... Generator Loss: 1.0386
Epoch 1/2... Discriminator Loss: 1.1299... Generator Loss: 0.6154
Epoch 1/2... Discriminator Loss: 0.9951... Generator Loss: 0.7374
Epoch 1/2... Discriminator Loss: 1.0760... Generator Loss: 0.7592
Epoch 1/2... Discriminator Loss: 0.9274... Generator Loss: 0.7724
Epoch 1/2... Discriminator Loss: 1.4025... Generator Loss: 0.3702
Epoch 1/2... Discriminator Loss: 1.2397... Generator Loss: 0.4957
Epoch 1/2... Discriminator Loss: 0.9677... Generator Loss: 0.8527
Epoch 1/2... Discriminator Loss: 0.8911... Generator Loss: 1.1152
Epoch 1/2... Discriminator Loss: 1.0839... Generator Loss: 1.6539
Epoch 1/2... Discriminator Loss: 1.2666... Generator Loss: 1.9823
Epoch 1/2... Discriminator Loss: 0.9064... Generator Loss: 1.3169
Epoch 1/2... Discriminator Loss: 0.9648... Generator Loss: 1.6061
Epoch 1/2... Discriminator Loss: 1.1307... Generator Loss: 1.4978
Epoch 1/2... Discriminator Loss: 0.9029... Generator Loss: 1.0465
Epoch 1/2... Discriminator Loss: 1.0108... Generator Loss: 1.0946
Epoch 1/2... Discriminator Loss: 0.9010... Generator Loss: 0.9511
Epoch 1/2... Discriminator Loss: 1.1253... Generator Loss: 0.6205
Epoch 1/2... Discriminator Loss: 1.1223... Generator Loss: 0.5447
Epoch 1/2... Discriminator Loss: 1.3094... Generator Loss: 0.4253
Epoch 1/2... Discriminator Loss: 0.9606... Generator Loss: 0.8213
Epoch 1/2... Discriminator Loss: 1.1136... Generator Loss: 1.6665
Epoch 1/2... Discriminator Loss: 0.9995... Generator Loss: 1.4418
Epoch 1/2... Discriminator Loss: 0.9040... Generator Loss: 0.8476
Epoch 1/2... Discriminator Loss: 0.9205... Generator Loss: 0.7501
Epoch 1/2... Discriminator Loss: 1.0030... Generator Loss: 0.7021
Epoch 1/2... Discriminator Loss: 1.0001... Generator Loss: 0.7865
Epoch 1/2... Discriminator Loss: 1.3164... Generator Loss: 0.4607
Epoch 1/2... Discriminator Loss: 1.1570... Generator Loss: 0.5280
Epoch 1/2... Discriminator Loss: 0.9577... Generator Loss: 0.7010
Epoch 1/2... Discriminator Loss: 0.8970... Generator Loss: 0.7408
Epoch 1/2... Discriminator Loss: 0.8902... Generator Loss: 0.8035
Epoch 1/2... Discriminator Loss: 0.8774... Generator Loss: 0.8781
Epoch 1/2... Discriminator Loss: 1.0538... Generator Loss: 0.6968
Epoch 1/2... Discriminator Loss: 0.8075... Generator Loss: 1.1133
Epoch 1/2... Discriminator Loss: 0.9088... Generator Loss: 1.0942
Epoch 1/2... Discriminator Loss: 0.7916... Generator Loss: 1.2958
Epoch 1/2... Discriminator Loss: 0.8005... Generator Loss: 1.8214
Epoch 1/2... Discriminator Loss: 0.8967... Generator Loss: 1.3203
Epoch 1/2... Discriminator Loss: 0.8206... Generator Loss: 1.2115
Epoch 1/2... Discriminator Loss: 1.0063... Generator Loss: 1.4167
Epoch 1/2... Discriminator Loss: 1.1961... Generator Loss: 2.2683
Epoch 1/2... Discriminator Loss: 0.8569... Generator Loss: 1.5650
Epoch 1/2... Discriminator Loss: 0.7653... Generator Loss: 1.3176
Epoch 1/2... Discriminator Loss: 0.8281... Generator Loss: 1.9218
Epoch 1/2... Discriminator Loss: 1.0191... Generator Loss: 1.6871
Epoch 1/2... Discriminator Loss: 1.1197... Generator Loss: 1.9448
Epoch 1/2... Discriminator Loss: 0.8667... Generator Loss: 1.0945
Epoch 1/2... Discriminator Loss: 0.8334... Generator Loss: 0.8782
Epoch 1/2... Discriminator Loss: 0.8878... Generator Loss: 0.8384
Epoch 1/2... Discriminator Loss: 0.9883... Generator Loss: 0.7391
Epoch 1/2... Discriminator Loss: 1.2321... Generator Loss: 0.4496
Epoch 1/2... Discriminator Loss: 1.0692... Generator Loss: 0.6019
Epoch 1/2... Discriminator Loss: 0.9661... Generator Loss: 0.8563
Epoch 1/2... Discriminator Loss: 0.8570... Generator Loss: 1.1746
Epoch 1/2... Discriminator Loss: 1.0556... Generator Loss: 1.8952
Epoch 1/2... Discriminator Loss: 1.0884... Generator Loss: 1.8167
Epoch 1/2... Discriminator Loss: 0.8911... Generator Loss: 1.3666
Epoch 1/2... Discriminator Loss: 1.0643... Generator Loss: 1.6528
Epoch 1/2... Discriminator Loss: 1.0908... Generator Loss: 1.5913
Epoch 1/2... Discriminator Loss: 0.8107... Generator Loss: 1.4899
Epoch 1/2... Discriminator Loss: 0.9615... Generator Loss: 1.3447
Epoch 1/2... Discriminator Loss: 0.9042... Generator Loss: 1.1327
Epoch 1/2... Discriminator Loss: 0.9199... Generator Loss: 0.8159
Epoch 1/2... Discriminator Loss: 0.9590... Generator Loss: 0.8314
Epoch 1/2... Discriminator Loss: 0.8393... Generator Loss: 1.0692
Epoch 1/2... Discriminator Loss: 1.0464... Generator Loss: 0.6989
Epoch 1/2... Discriminator Loss: 1.2698... Generator Loss: 0.4212
Epoch 1/2... Discriminator Loss: 1.2131... Generator Loss: 0.4890
Epoch 1/2... Discriminator Loss: 1.3975... Generator Loss: 0.3927
Epoch 1/2... Discriminator Loss: 0.9631... Generator Loss: 0.9131
Epoch 1/2... Discriminator Loss: 1.0034... Generator Loss: 1.1312
Epoch 1/2... Discriminator Loss: 1.0668... Generator Loss: 0.6125
Epoch 1/2... Discriminator Loss: 1.5669... Generator Loss: 0.3068
Epoch 1/2... Discriminator Loss: 1.0195... Generator Loss: 0.7060
Epoch 1/2... Discriminator Loss: 0.9216... Generator Loss: 1.2266
Epoch 1/2... Discriminator Loss: 0.8707... Generator Loss: 1.2045
Epoch 1/2... Discriminator Loss: 0.9252... Generator Loss: 0.7996
Epoch 1/2... Discriminator Loss: 0.9212... Generator Loss: 0.7198
Epoch 1/2... Discriminator Loss: 1.1917... Generator Loss: 0.4973
Epoch 1/2... Discriminator Loss: 0.9005... Generator Loss: 0.8739
Epoch 1/2... Discriminator Loss: 0.9433... Generator Loss: 0.7465
Epoch 1/2... Discriminator Loss: 0.9072... Generator Loss: 0.8854
Epoch 1/2... Discriminator Loss: 0.8435... Generator Loss: 0.9051
Epoch 1/2... Discriminator Loss: 0.8905... Generator Loss: 0.9986
Epoch 1/2... Discriminator Loss: 0.9517... Generator Loss: 1.5768
Epoch 1/2... Discriminator Loss: 1.6025... Generator Loss: 2.6388
Epoch 1/2... Discriminator Loss: 1.3651... Generator Loss: 2.1162
Epoch 1/2... Discriminator Loss: 0.8911... Generator Loss: 1.1843
Epoch 1/2... Discriminator Loss: 1.0453... Generator Loss: 0.7472
Epoch 1/2... Discriminator Loss: 1.0147... Generator Loss: 0.8815
Epoch 1/2... Discriminator Loss: 1.0165... Generator Loss: 1.4110
Epoch 1/2... Discriminator Loss: 1.1582... Generator Loss: 1.6852
Epoch 1/2... Discriminator Loss: 1.0267... Generator Loss: 1.4947
Epoch 1/2... Discriminator Loss: 1.0558... Generator Loss: 1.4304
Epoch 1/2... Discriminator Loss: 0.9398... Generator Loss: 1.6950
Epoch 1/2... Discriminator Loss: 0.9999... Generator Loss: 1.0922
Epoch 1/2... Discriminator Loss: 1.1415... Generator Loss: 0.6782
Epoch 1/2... Discriminator Loss: 1.0316... Generator Loss: 0.7111
Epoch 1/2... Discriminator Loss: 1.0772... Generator Loss: 0.6461
Epoch 1/2... Discriminator Loss: 1.3855... Generator Loss: 0.3893
Epoch 1/2... Discriminator Loss: 1.3003... Generator Loss: 0.4668
Epoch 1/2... Discriminator Loss: 1.0385... Generator Loss: 0.7554
Epoch 1/2... Discriminator Loss: 1.0275... Generator Loss: 0.7796
Epoch 1/2... Discriminator Loss: 1.0509... Generator Loss: 0.7365
Epoch 1/2... Discriminator Loss: 1.2161... Generator Loss: 0.4407
Epoch 1/2... Discriminator Loss: 1.1784... Generator Loss: 0.4962
Epoch 1/2... Discriminator Loss: 1.2231... Generator Loss: 0.4723
Epoch 1/2... Discriminator Loss: 1.0167... Generator Loss: 1.3301
Epoch 1/2... Discriminator Loss: 1.1404... Generator Loss: 1.7185
Epoch 1/2... Discriminator Loss: 0.9264... Generator Loss: 1.5236
Epoch 1/2... Discriminator Loss: 0.9421... Generator Loss: 0.9428
Epoch 1/2... Discriminator Loss: 1.1085... Generator Loss: 0.6386
Epoch 1/2... Discriminator Loss: 1.1689... Generator Loss: 0.5166
Epoch 1/2... Discriminator Loss: 0.9833... Generator Loss: 0.7588
Epoch 1/2... Discriminator Loss: 1.0176... Generator Loss: 0.7417
Epoch 1/2... Discriminator Loss: 1.1268... Generator Loss: 0.6237
Epoch 1/2... Discriminator Loss: 0.9985... Generator Loss: 0.8604
Epoch 1/2... Discriminator Loss: 1.0442... Generator Loss: 0.9746
Epoch 1/2... Discriminator Loss: 0.8420... Generator Loss: 1.1181
Epoch 1/2... Discriminator Loss: 0.8818... Generator Loss: 0.8640
Epoch 1/2... Discriminator Loss: 1.2956... Generator Loss: 0.4154
Epoch 1/2... Discriminator Loss: 1.9420... Generator Loss: 0.2213
Epoch 1/2... Discriminator Loss: 1.2665... Generator Loss: 0.4796
Epoch 1/2... Discriminator Loss: 0.9201... Generator Loss: 0.9770
Epoch 1/2... Discriminator Loss: 0.9656... Generator Loss: 1.2583
Epoch 1/2... Discriminator Loss: 0.9304... Generator Loss: 0.9732
Epoch 1/2... Discriminator Loss: 1.0812... Generator Loss: 0.6360
Epoch 1/2... Discriminator Loss: 1.1931... Generator Loss: 0.5044
Epoch 1/2... Discriminator Loss: 1.3263... Generator Loss: 0.4212
Epoch 1/2... Discriminator Loss: 1.0125... Generator Loss: 0.8180
Epoch 1/2... Discriminator Loss: 1.1246... Generator Loss: 0.6691
Epoch 1/2... Discriminator Loss: 1.2101... Generator Loss: 0.4922
Epoch 1/2... Discriminator Loss: 1.0539... Generator Loss: 0.5943
Epoch 1/2... Discriminator Loss: 0.9196... Generator Loss: 0.8650
Epoch 1/2... Discriminator Loss: 0.9731... Generator Loss: 0.8634
Epoch 1/2... Discriminator Loss: 0.9738... Generator Loss: 1.0287
Epoch 1/2... Discriminator Loss: 0.9470... Generator Loss: 1.3677
Epoch 1/2... Discriminator Loss: 1.2523... Generator Loss: 2.0625
Epoch 1/2... Discriminator Loss: 1.1616... Generator Loss: 1.6071
Epoch 1/2... Discriminator Loss: 1.0987... Generator Loss: 1.1540
Epoch 1/2... Discriminator Loss: 0.9440... Generator Loss: 1.1026
Epoch 1/2... Discriminator Loss: 1.0362... Generator Loss: 1.5779
Epoch 1/2... Discriminator Loss: 1.0237... Generator Loss: 0.9408
Epoch 1/2... Discriminator Loss: 1.2033... Generator Loss: 0.4935
Epoch 1/2... Discriminator Loss: 1.4424... Generator Loss: 0.3411
Epoch 1/2... Discriminator Loss: 0.8697... Generator Loss: 0.8859
Epoch 1/2... Discriminator Loss: 1.1504... Generator Loss: 1.7812
Epoch 1/2... Discriminator Loss: 0.8288... Generator Loss: 1.1878
Epoch 1/2... Discriminator Loss: 0.9594... Generator Loss: 1.2264
Epoch 1/2... Discriminator Loss: 1.0214... Generator Loss: 1.3260
Epoch 1/2... Discriminator Loss: 1.0037... Generator Loss: 1.2486
Epoch 1/2... Discriminator Loss: 0.8647... Generator Loss: 1.3658
Epoch 1/2... Discriminator Loss: 0.9962... Generator Loss: 1.4086
Epoch 1/2... Discriminator Loss: 0.9568... Generator Loss: 1.3277
Epoch 1/2... Discriminator Loss: 0.9626... Generator Loss: 1.4081
Epoch 1/2... Discriminator Loss: 1.0192... Generator Loss: 1.2400
Epoch 1/2... Discriminator Loss: 1.1059... Generator Loss: 1.5545
Epoch 1/2... Discriminator Loss: 1.0839... Generator Loss: 1.5514
Epoch 1/2... Discriminator Loss: 0.8894... Generator Loss: 1.2301
Epoch 1/2... Discriminator Loss: 0.8873... Generator Loss: 1.1033
Epoch 1/2... Discriminator Loss: 1.0128... Generator Loss: 1.2241
Epoch 1/2... Discriminator Loss: 0.9601... Generator Loss: 1.3972
Epoch 1/2... Discriminator Loss: 0.9611... Generator Loss: 1.4572
Epoch 1/2... Discriminator Loss: 0.7578... Generator Loss: 1.1270
Epoch 1/2... Discriminator Loss: 0.9185... Generator Loss: 1.1749
Epoch 1/2... Discriminator Loss: 1.1073... Generator Loss: 1.1894
Epoch 1/2... Discriminator Loss: 0.8686... Generator Loss: 1.1915
Epoch 1/2... Discriminator Loss: 0.9434... Generator Loss: 1.4602
Epoch 1/2... Discriminator Loss: 1.1280... Generator Loss: 1.7468
Epoch 1/2... Discriminator Loss: 1.1073... Generator Loss: 1.7043
Epoch 1/2... Discriminator Loss: 1.0309... Generator Loss: 1.3582
Epoch 1/2... Discriminator Loss: 1.0755... Generator Loss: 1.3455
Epoch 1/2... Discriminator Loss: 0.9671... Generator Loss: 0.9303
Epoch 1/2... Discriminator Loss: 0.9287... Generator Loss: 0.9971
Epoch 1/2... Discriminator Loss: 1.0776... Generator Loss: 1.4322
Epoch 1/2... Discriminator Loss: 1.2360... Generator Loss: 2.0270
Epoch 1/2... Discriminator Loss: 1.0539... Generator Loss: 1.0210
Epoch 1/2... Discriminator Loss: 1.2163... Generator Loss: 0.5112
Epoch 1/2... Discriminator Loss: 0.9814... Generator Loss: 1.0786
Epoch 1/2... Discriminator Loss: 1.0292... Generator Loss: 1.1228
Epoch 1/2... Discriminator Loss: 1.0706... Generator Loss: 0.9236
Epoch 1/2... Discriminator Loss: 0.9986... Generator Loss: 1.0607
Epoch 1/2... Discriminator Loss: 0.9260... Generator Loss: 1.0275
Epoch 1/2... Discriminator Loss: 0.8769... Generator Loss: 1.0035
Epoch 1/2... Discriminator Loss: 0.9445... Generator Loss: 1.0143
Epoch 1/2... Discriminator Loss: 0.9874... Generator Loss: 1.0527
Epoch 1/2... Discriminator Loss: 1.0743... Generator Loss: 1.0305
Epoch 1/2... Discriminator Loss: 1.3248... Generator Loss: 0.4040
Epoch 1/2... Discriminator Loss: 1.7917... Generator Loss: 0.2395
Epoch 1/2... Discriminator Loss: 1.1932... Generator Loss: 0.5888
Epoch 1/2... Discriminator Loss: 1.1736... Generator Loss: 0.5493
Epoch 1/2... Discriminator Loss: 0.9169... Generator Loss: 0.9027
Epoch 1/2... Discriminator Loss: 0.9397... Generator Loss: 1.2312
Epoch 1/2... Discriminator Loss: 0.9569... Generator Loss: 1.1855
Epoch 1/2... Discriminator Loss: 1.0504... Generator Loss: 1.0593
Epoch 1/2... Discriminator Loss: 1.0192... Generator Loss: 1.2450
Epoch 1/2... Discriminator Loss: 1.0476... Generator Loss: 1.2673
Epoch 1/2... Discriminator Loss: 0.9627... Generator Loss: 0.9534
Epoch 1/2... Discriminator Loss: 0.9695... Generator Loss: 0.8884
Epoch 1/2... Discriminator Loss: 0.9448... Generator Loss: 1.1021
Epoch 1/2... Discriminator Loss: 0.9489... Generator Loss: 0.8852
Epoch 1/2... Discriminator Loss: 1.0480... Generator Loss: 0.6503
Epoch 1/2... Discriminator Loss: 1.2854... Generator Loss: 0.4049
Epoch 1/2... Discriminator Loss: 1.3300... Generator Loss: 0.4221
Epoch 1/2... Discriminator Loss: 1.1616... Generator Loss: 0.5907
Epoch 1/2... Discriminator Loss: 1.0063... Generator Loss: 0.8909
Epoch 1/2... Discriminator Loss: 1.0208... Generator Loss: 1.6829
Epoch 1/2... Discriminator Loss: 1.0226... Generator Loss: 1.6153
Epoch 1/2... Discriminator Loss: 0.8988... Generator Loss: 1.1546
Epoch 1/2... Discriminator Loss: 1.0523... Generator Loss: 1.1646
Epoch 1/2... Discriminator Loss: 0.9419... Generator Loss: 1.3735
Epoch 1/2... Discriminator Loss: 0.8697... Generator Loss: 1.1359
Epoch 1/2... Discriminator Loss: 1.0688... Generator Loss: 1.5646
Epoch 1/2... Discriminator Loss: 0.9168... Generator Loss: 1.3277
Epoch 1/2... Discriminator Loss: 1.1001... Generator Loss: 0.7065
Epoch 1/2... Discriminator Loss: 0.9644... Generator Loss: 1.2104
Epoch 1/2... Discriminator Loss: 0.8643... Generator Loss: 1.3207
Epoch 1/2... Discriminator Loss: 0.9665... Generator Loss: 1.3132
Epoch 1/2... Discriminator Loss: 1.1491... Generator Loss: 1.3005
Epoch 1/2... Discriminator Loss: 1.0847... Generator Loss: 1.7850
Epoch 1/2... Discriminator Loss: 0.9099... Generator Loss: 1.1783
Epoch 1/2... Discriminator Loss: 1.0734... Generator Loss: 0.6308
Epoch 1/2... Discriminator Loss: 1.3648... Generator Loss: 0.4413
Epoch 1/2... Discriminator Loss: 1.1081... Generator Loss: 0.6298
Epoch 1/2... Discriminator Loss: 1.0479... Generator Loss: 0.7664
Epoch 1/2... Discriminator Loss: 1.0632... Generator Loss: 1.0314
Epoch 1/2... Discriminator Loss: 0.9638... Generator Loss: 0.8408
Epoch 1/2... Discriminator Loss: 1.2883... Generator Loss: 0.4545
Epoch 1/2... Discriminator Loss: 1.4920... Generator Loss: 0.3674
Epoch 1/2... Discriminator Loss: 1.1555... Generator Loss: 0.5864
Epoch 1/2... Discriminator Loss: 0.9707... Generator Loss: 1.0089
Epoch 1/2... Discriminator Loss: 1.0690... Generator Loss: 0.6524
Epoch 1/2... Discriminator Loss: 1.1316... Generator Loss: 0.5768
Epoch 1/2... Discriminator Loss: 0.9681... Generator Loss: 0.7085
Epoch 1/2... Discriminator Loss: 0.9456... Generator Loss: 1.1042
Epoch 1/2... Discriminator Loss: 0.8667... Generator Loss: 0.8991
Epoch 1/2... Discriminator Loss: 1.1382... Generator Loss: 0.5115
Epoch 1/2... Discriminator Loss: 1.6344... Generator Loss: 0.2912
Epoch 1/2... Discriminator Loss: 1.1382... Generator Loss: 0.6220
Epoch 1/2... Discriminator Loss: 1.0753... Generator Loss: 0.7448
Epoch 1/2... Discriminator Loss: 0.9891... Generator Loss: 0.9305
Epoch 1/2... Discriminator Loss: 0.8777... Generator Loss: 1.1863
Epoch 1/2... Discriminator Loss: 0.9181... Generator Loss: 1.0938
Epoch 1/2... Discriminator Loss: 1.1005... Generator Loss: 1.2103
Epoch 1/2... Discriminator Loss: 1.0391... Generator Loss: 1.3528
Epoch 1/2... Discriminator Loss: 1.0261... Generator Loss: 0.7658
Epoch 1/2... Discriminator Loss: 1.1158... Generator Loss: 0.5747
Epoch 1/2... Discriminator Loss: 1.0676... Generator Loss: 0.6020
Epoch 1/2... Discriminator Loss: 1.1936... Generator Loss: 0.5232
Epoch 1/2... Discriminator Loss: 1.1076... Generator Loss: 0.6306
Epoch 1/2... Discriminator Loss: 1.0004... Generator Loss: 0.9251
Epoch 1/2... Discriminator Loss: 0.8881... Generator Loss: 1.4318
Epoch 1/2... Discriminator Loss: 0.9927... Generator Loss: 0.9161
Epoch 1/2... Discriminator Loss: 0.9866... Generator Loss: 1.0111
Epoch 1/2... Discriminator Loss: 1.0481... Generator Loss: 1.5240
Epoch 1/2... Discriminator Loss: 1.2505... Generator Loss: 2.0690
Epoch 1/2... Discriminator Loss: 1.3634... Generator Loss: 1.6618
Epoch 1/2... Discriminator Loss: 1.1613... Generator Loss: 1.3719
Epoch 1/2... Discriminator Loss: 0.9779... Generator Loss: 1.1114
Epoch 1/2... Discriminator Loss: 1.0359... Generator Loss: 1.4991
Epoch 1/2... Discriminator Loss: 1.1481... Generator Loss: 1.4688
Epoch 1/2... Discriminator Loss: 0.9470... Generator Loss: 0.7689
Epoch 1/2... Discriminator Loss: 1.0428... Generator Loss: 0.6732
Epoch 1/2... Discriminator Loss: 1.0573... Generator Loss: 0.7010
Epoch 1/2... Discriminator Loss: 1.0280... Generator Loss: 0.7549
Epoch 1/2... Discriminator Loss: 1.0410... Generator Loss: 0.7904
Epoch 1/2... Discriminator Loss: 0.9486... Generator Loss: 0.9897
Epoch 1/2... Discriminator Loss: 0.9811... Generator Loss: 1.1178
Epoch 1/2... Discriminator Loss: 0.9401... Generator Loss: 1.0544
Epoch 1/2... Discriminator Loss: 0.8512... Generator Loss: 1.1156
Epoch 1/2... Discriminator Loss: 1.0598... Generator Loss: 1.5109
Epoch 1/2... Discriminator Loss: 0.9428... Generator Loss: 1.4532
Epoch 1/2... Discriminator Loss: 1.0511... Generator Loss: 0.7406
Epoch 1/2... Discriminator Loss: 1.5693... Generator Loss: 0.3012
Epoch 1/2... Discriminator Loss: 1.0047... Generator Loss: 0.7286
Epoch 1/2... Discriminator Loss: 0.7875... Generator Loss: 1.1953
Epoch 1/2... Discriminator Loss: 0.8648... Generator Loss: 1.3198
Epoch 1/2... Discriminator Loss: 0.9792... Generator Loss: 1.3633
Epoch 1/2... Discriminator Loss: 0.8926... Generator Loss: 0.9099
Epoch 1/2... Discriminator Loss: 1.1461... Generator Loss: 0.5259
Epoch 1/2... Discriminator Loss: 0.9392... Generator Loss: 0.8900
Epoch 1/2... Discriminator Loss: 0.8660... Generator Loss: 1.2465
Epoch 1/2... Discriminator Loss: 0.9342... Generator Loss: 1.0966
Epoch 1/2... Discriminator Loss: 1.1439... Generator Loss: 0.5603
Epoch 1/2... Discriminator Loss: 1.1512... Generator Loss: 0.5236
Epoch 1/2... Discriminator Loss: 0.8599... Generator Loss: 0.9320
Epoch 1/2... Discriminator Loss: 0.9058... Generator Loss: 1.1402
Epoch 1/2... Discriminator Loss: 0.9392... Generator Loss: 0.9299
Epoch 1/2... Discriminator Loss: 0.8862... Generator Loss: 0.7878
Epoch 1/2... Discriminator Loss: 1.0201... Generator Loss: 0.7228
Epoch 1/2... Discriminator Loss: 0.9271... Generator Loss: 0.8984
Epoch 1/2... Discriminator Loss: 0.8385... Generator Loss: 1.1221
Epoch 1/2... Discriminator Loss: 0.9433... Generator Loss: 1.3678
Epoch 1/2... Discriminator Loss: 0.8243... Generator Loss: 1.4107
Epoch 1/2... Discriminator Loss: 0.8819... Generator Loss: 1.1997
Epoch 1/2... Discriminator Loss: 0.9432... Generator Loss: 0.7744
Epoch 1/2... Discriminator Loss: 0.9925... Generator Loss: 0.6655
Epoch 1/2... Discriminator Loss: 1.0772... Generator Loss: 0.6004
Epoch 1/2... Discriminator Loss: 1.1495... Generator Loss: 0.5328
Epoch 1/2... Discriminator Loss: 0.9500... Generator Loss: 0.7605
Epoch 1/2... Discriminator Loss: 0.9343... Generator Loss: 0.8331
Epoch 1/2... Discriminator Loss: 1.0969... Generator Loss: 1.8103
Epoch 1/2... Discriminator Loss: 1.2777... Generator Loss: 2.3400
Epoch 1/2... Discriminator Loss: 1.0923... Generator Loss: 1.4684
Epoch 1/2... Discriminator Loss: 1.0863... Generator Loss: 0.6352
Epoch 1/2... Discriminator Loss: 0.8752... Generator Loss: 0.8505
Epoch 1/2... Discriminator Loss: 0.8175... Generator Loss: 1.2304
Epoch 1/2... Discriminator Loss: 0.8755... Generator Loss: 1.4507
Epoch 1/2... Discriminator Loss: 1.0027... Generator Loss: 1.2729
Epoch 1/2... Discriminator Loss: 0.8946... Generator Loss: 1.1839
Epoch 1/2... Discriminator Loss: 0.9277... Generator Loss: 1.3962
Epoch 1/2... Discriminator Loss: 0.8163... Generator Loss: 1.3808
Epoch 1/2... Discriminator Loss: 0.8695... Generator Loss: 1.0456
Epoch 1/2... Discriminator Loss: 1.0567... Generator Loss: 0.6654
Epoch 1/2... Discriminator Loss: 1.3257... Generator Loss: 0.3917
Epoch 1/2... Discriminator Loss: 1.3673... Generator Loss: 0.4319
Epoch 1/2... Discriminator Loss: 0.9331... Generator Loss: 0.8442
Epoch 1/2... Discriminator Loss: 0.8902... Generator Loss: 1.4346
Epoch 1/2... Discriminator Loss: 0.9776... Generator Loss: 1.0571
Epoch 1/2... Discriminator Loss: 1.0426... Generator Loss: 1.9744
Epoch 1/2... Discriminator Loss: 0.8818... Generator Loss: 1.0931
Epoch 1/2... Discriminator Loss: 0.9614... Generator Loss: 0.7394
Epoch 1/2... Discriminator Loss: 1.1224... Generator Loss: 0.5106
Epoch 1/2... Discriminator Loss: 0.9918... Generator Loss: 0.8902
Epoch 1/2... Discriminator Loss: 0.9663... Generator Loss: 1.1553
Epoch 1/2... Discriminator Loss: 0.9700... Generator Loss: 1.6805
Epoch 1/2... Discriminator Loss: 0.9323... Generator Loss: 1.5405
Epoch 1/2... Discriminator Loss: 1.0214... Generator Loss: 1.0742
Epoch 1/2... Discriminator Loss: 0.8551... Generator Loss: 1.2289
Epoch 1/2... Discriminator Loss: 0.9251... Generator Loss: 0.8033
Epoch 1/2... Discriminator Loss: 0.8703... Generator Loss: 1.2254
Epoch 1/2... Discriminator Loss: 0.7997... Generator Loss: 0.9774
Epoch 1/2... Discriminator Loss: 1.1874... Generator Loss: 0.4720
Epoch 1/2... Discriminator Loss: 1.0189... Generator Loss: 0.5969
Epoch 1/2... Discriminator Loss: 1.0306... Generator Loss: 0.6925
Epoch 1/2... Discriminator Loss: 1.0937... Generator Loss: 0.5875
Epoch 1/2... Discriminator Loss: 1.2662... Generator Loss: 0.4608
Epoch 1/2... Discriminator Loss: 1.1411... Generator Loss: 0.5825
Epoch 1/2... Discriminator Loss: 1.2272... Generator Loss: 0.4969
Epoch 1/2... Discriminator Loss: 0.9112... Generator Loss: 0.8583
Epoch 1/2... Discriminator Loss: 0.9979... Generator Loss: 1.6151
Epoch 1/2... Discriminator Loss: 1.0563... Generator Loss: 1.4510
Epoch 1/2... Discriminator Loss: 0.9608... Generator Loss: 1.6280
Epoch 1/2... Discriminator Loss: 0.8886... Generator Loss: 1.8533
Epoch 1/2... Discriminator Loss: 0.8548... Generator Loss: 1.5187
Epoch 1/2... Discriminator Loss: 0.9400... Generator Loss: 0.9202
Epoch 1/2... Discriminator Loss: 0.9224... Generator Loss: 1.4209
Epoch 1/2... Discriminator Loss: 0.8982... Generator Loss: 1.1328
Epoch 1/2... Discriminator Loss: 0.9228... Generator Loss: 0.9797
Epoch 1/2... Discriminator Loss: 1.0251... Generator Loss: 1.8051
Epoch 1/2... Discriminator Loss: 1.1347... Generator Loss: 1.7363
Epoch 1/2... Discriminator Loss: 1.1531... Generator Loss: 1.6853
Epoch 1/2... Discriminator Loss: 0.9415... Generator Loss: 1.1140
Epoch 1/2... Discriminator Loss: 0.9770... Generator Loss: 1.2310
Epoch 1/2... Discriminator Loss: 0.9099... Generator Loss: 0.9408
Epoch 1/2... Discriminator Loss: 0.8509... Generator Loss: 0.8872
Epoch 1/2... Discriminator Loss: 0.8607... Generator Loss: 0.9039
Epoch 1/2... Discriminator Loss: 0.9810... Generator Loss: 0.7633
Epoch 1/2... Discriminator Loss: 0.7991... Generator Loss: 1.2494
Epoch 1/2... Discriminator Loss: 1.0281... Generator Loss: 1.8360
Epoch 1/2... Discriminator Loss: 1.0408... Generator Loss: 0.8781
Epoch 1/2... Discriminator Loss: 0.8555... Generator Loss: 1.1916
Epoch 1/2... Discriminator Loss: 1.0062... Generator Loss: 1.9936
Epoch 1/2... Discriminator Loss: 0.9092... Generator Loss: 1.8645
Epoch 1/2... Discriminator Loss: 1.1248... Generator Loss: 0.5391
Epoch 1/2... Discriminator Loss: 0.8435... Generator Loss: 0.8159
Epoch 1/2... Discriminator Loss: 0.9415... Generator Loss: 0.8323
Epoch 1/2... Discriminator Loss: 0.9451... Generator Loss: 0.7446
Epoch 1/2... Discriminator Loss: 1.0046... Generator Loss: 0.6323
Epoch 1/2... Discriminator Loss: 0.7431... Generator Loss: 1.0524
Epoch 2/2... Discriminator Loss: 0.8022... Generator Loss: 1.5160
Epoch 2/2... Discriminator Loss: 1.0076... Generator Loss: 2.2722
Epoch 2/2... Discriminator Loss: 0.8471... Generator Loss: 0.8867
Epoch 2/2... Discriminator Loss: 0.9867... Generator Loss: 0.6575
Epoch 2/2... Discriminator Loss: 1.1782... Generator Loss: 0.5111
Epoch 2/2... Discriminator Loss: 0.9278... Generator Loss: 0.7612
Epoch 2/2... Discriminator Loss: 0.8833... Generator Loss: 0.9245
Epoch 2/2... Discriminator Loss: 1.0054... Generator Loss: 0.7051
Epoch 2/2... Discriminator Loss: 0.9909... Generator Loss: 0.6469
Epoch 2/2... Discriminator Loss: 1.0364... Generator Loss: 0.6302
Epoch 2/2... Discriminator Loss: 0.8294... Generator Loss: 1.0320
Epoch 2/2... Discriminator Loss: 0.7555... Generator Loss: 1.3878
Epoch 2/2... Discriminator Loss: 1.0667... Generator Loss: 2.1176
Epoch 2/2... Discriminator Loss: 1.2463... Generator Loss: 2.1613
Epoch 2/2... Discriminator Loss: 1.6073... Generator Loss: 2.7715
Epoch 2/2... Discriminator Loss: 1.0187... Generator Loss: 1.2516
Epoch 2/2... Discriminator Loss: 0.7014... Generator Loss: 1.1969
Epoch 2/2... Discriminator Loss: 0.8315... Generator Loss: 0.9000
Epoch 2/2... Discriminator Loss: 0.7819... Generator Loss: 1.1709
Epoch 2/2... Discriminator Loss: 0.8852... Generator Loss: 0.9388
Epoch 2/2... Discriminator Loss: 0.8815... Generator Loss: 0.8233
Epoch 2/2... Discriminator Loss: 0.7351... Generator Loss: 1.1008
Epoch 2/2... Discriminator Loss: 0.7964... Generator Loss: 1.3326
Epoch 2/2... Discriminator Loss: 0.7113... Generator Loss: 1.5482
Epoch 2/2... Discriminator Loss: 1.0021... Generator Loss: 0.6695
Epoch 2/2... Discriminator Loss: 1.1897... Generator Loss: 0.4789
Epoch 2/2... Discriminator Loss: 0.7956... Generator Loss: 1.1347
Epoch 2/2... Discriminator Loss: 0.9104... Generator Loss: 0.9222
Epoch 2/2... Discriminator Loss: 0.8136... Generator Loss: 0.9302
Epoch 2/2... Discriminator Loss: 1.0248... Generator Loss: 0.6079
Epoch 2/2... Discriminator Loss: 1.0073... Generator Loss: 0.6880
Epoch 2/2... Discriminator Loss: 1.0274... Generator Loss: 0.7774
Epoch 2/2... Discriminator Loss: 0.8599... Generator Loss: 0.8771
Epoch 2/2... Discriminator Loss: 0.7561... Generator Loss: 1.2028
Epoch 2/2... Discriminator Loss: 0.8141... Generator Loss: 1.2819
Epoch 2/2... Discriminator Loss: 0.9259... Generator Loss: 0.9712
Epoch 2/2... Discriminator Loss: 0.9163... Generator Loss: 1.4599
Epoch 2/2... Discriminator Loss: 0.8081... Generator Loss: 0.9798
Epoch 2/2... Discriminator Loss: 0.9091... Generator Loss: 0.7838
Epoch 2/2... Discriminator Loss: 1.6436... Generator Loss: 0.2754
Epoch 2/2... Discriminator Loss: 1.5499... Generator Loss: 0.3717
Epoch 2/2... Discriminator Loss: 3.2210... Generator Loss: 0.0598
Epoch 2/2... Discriminator Loss: 1.2851... Generator Loss: 0.7389
Epoch 2/2... Discriminator Loss: 1.2533... Generator Loss: 1.3935
Epoch 2/2... Discriminator Loss: 1.0889... Generator Loss: 1.6763
Epoch 2/2... Discriminator Loss: 1.1181... Generator Loss: 0.6855
Epoch 2/2... Discriminator Loss: 1.2586... Generator Loss: 0.6107
Epoch 2/2... Discriminator Loss: 0.9364... Generator Loss: 1.2255
Epoch 2/2... Discriminator Loss: 1.0202... Generator Loss: 0.9663
Epoch 2/2... Discriminator Loss: 0.9625... Generator Loss: 0.9404
Epoch 2/2... Discriminator Loss: 1.0722... Generator Loss: 0.7143
Epoch 2/2... Discriminator Loss: 1.1206... Generator Loss: 0.6990
Epoch 2/2... Discriminator Loss: 1.0578... Generator Loss: 0.8542
Epoch 2/2... Discriminator Loss: 0.9728... Generator Loss: 0.7343
Epoch 2/2... Discriminator Loss: 0.9192... Generator Loss: 1.3524
Epoch 2/2... Discriminator Loss: 1.3608... Generator Loss: 0.4027
Epoch 2/2... Discriminator Loss: 1.2052... Generator Loss: 0.5144
Epoch 2/2... Discriminator Loss: 0.8125... Generator Loss: 0.9265
Epoch 2/2... Discriminator Loss: 0.9249... Generator Loss: 1.1771
Epoch 2/2... Discriminator Loss: 1.2061... Generator Loss: 0.5215
Epoch 2/2... Discriminator Loss: 1.0317... Generator Loss: 0.6381
Epoch 2/2... Discriminator Loss: 0.9173... Generator Loss: 0.9125
Epoch 2/2... Discriminator Loss: 1.0056... Generator Loss: 0.6200
Epoch 2/2... Discriminator Loss: 0.7420... Generator Loss: 0.9871
Epoch 2/2... Discriminator Loss: 0.8550... Generator Loss: 0.8968
Epoch 2/2... Discriminator Loss: 0.7005... Generator Loss: 1.4555
Epoch 2/2... Discriminator Loss: 0.9494... Generator Loss: 0.7117
Epoch 2/2... Discriminator Loss: 0.9673... Generator Loss: 0.7461
Epoch 2/2... Discriminator Loss: 0.7892... Generator Loss: 0.9898
Epoch 2/2... Discriminator Loss: 0.9544... Generator Loss: 0.8261
Epoch 2/2... Discriminator Loss: 1.2107... Generator Loss: 0.4434
Epoch 2/2... Discriminator Loss: 0.7193... Generator Loss: 1.2135
Epoch 2/2... Discriminator Loss: 0.8504... Generator Loss: 0.8714
Epoch 2/2... Discriminator Loss: 0.8488... Generator Loss: 1.7955
Epoch 2/2... Discriminator Loss: 0.9036... Generator Loss: 1.4751
Epoch 2/2... Discriminator Loss: 0.9482... Generator Loss: 1.0731
Epoch 2/2... Discriminator Loss: 1.0109... Generator Loss: 0.6828
Epoch 2/2... Discriminator Loss: 1.0168... Generator Loss: 0.6214
Epoch 2/2... Discriminator Loss: 0.9870... Generator Loss: 0.6962
Epoch 2/2... Discriminator Loss: 1.0452... Generator Loss: 0.5875
Epoch 2/2... Discriminator Loss: 1.3276... Generator Loss: 0.4088
Epoch 2/2... Discriminator Loss: 0.9133... Generator Loss: 0.7686
Epoch 2/2... Discriminator Loss: 0.9736... Generator Loss: 0.6805
Epoch 2/2... Discriminator Loss: 0.8627... Generator Loss: 1.0262
Epoch 2/2... Discriminator Loss: 0.8863... Generator Loss: 2.1646
Epoch 2/2... Discriminator Loss: 0.9523... Generator Loss: 0.9623
Epoch 2/2... Discriminator Loss: 0.7253... Generator Loss: 1.1630
Epoch 2/2... Discriminator Loss: 1.0910... Generator Loss: 0.5450
Epoch 2/2... Discriminator Loss: 0.9532... Generator Loss: 0.7178
Epoch 2/2... Discriminator Loss: 0.7989... Generator Loss: 0.9478
Epoch 2/2... Discriminator Loss: 1.1720... Generator Loss: 1.5078
Epoch 2/2... Discriminator Loss: 1.0585... Generator Loss: 2.1157
Epoch 2/2... Discriminator Loss: 1.5540... Generator Loss: 1.7131
Epoch 2/2... Discriminator Loss: 0.7702... Generator Loss: 1.7193
Epoch 2/2... Discriminator Loss: 0.6737... Generator Loss: 1.4789
Epoch 2/2... Discriminator Loss: 0.9406... Generator Loss: 0.8475
Epoch 2/2... Discriminator Loss: 1.2421... Generator Loss: 0.4881
Epoch 2/2... Discriminator Loss: 0.8604... Generator Loss: 0.8342
Epoch 2/2... Discriminator Loss: 0.8088... Generator Loss: 1.6975
Epoch 2/2... Discriminator Loss: 1.0945... Generator Loss: 1.1366
Epoch 2/2... Discriminator Loss: 1.0489... Generator Loss: 0.6320
Epoch 2/2... Discriminator Loss: 0.9692... Generator Loss: 0.6366
Epoch 2/2... Discriminator Loss: 0.9336... Generator Loss: 0.6949
Epoch 2/2... Discriminator Loss: 0.8135... Generator Loss: 0.9660
Epoch 2/2... Discriminator Loss: 0.8245... Generator Loss: 0.8480
Epoch 2/2... Discriminator Loss: 0.9924... Generator Loss: 0.6457
Epoch 2/2... Discriminator Loss: 1.4488... Generator Loss: 0.3191
Epoch 2/2... Discriminator Loss: 1.1591... Generator Loss: 0.5073
Epoch 2/2... Discriminator Loss: 0.8879... Generator Loss: 0.9571
Epoch 2/2... Discriminator Loss: 0.7654... Generator Loss: 1.2658
Epoch 2/2... Discriminator Loss: 0.8079... Generator Loss: 0.8343
Epoch 2/2... Discriminator Loss: 0.6447... Generator Loss: 1.3642
Epoch 2/2... Discriminator Loss: 0.7682... Generator Loss: 0.9981
Epoch 2/2... Discriminator Loss: 0.8119... Generator Loss: 0.8887
Epoch 2/2... Discriminator Loss: 0.7360... Generator Loss: 0.8996
Epoch 2/2... Discriminator Loss: 0.7455... Generator Loss: 0.9802
Epoch 2/2... Discriminator Loss: 0.8092... Generator Loss: 0.8836
Epoch 2/2... Discriminator Loss: 0.7686... Generator Loss: 1.4076
Epoch 2/2... Discriminator Loss: 1.0618... Generator Loss: 0.5941
Epoch 2/2... Discriminator Loss: 1.0728... Generator Loss: 0.5591
Epoch 2/2... Discriminator Loss: 0.6562... Generator Loss: 1.2963
Epoch 2/2... Discriminator Loss: 0.6590... Generator Loss: 1.4351
Epoch 2/2... Discriminator Loss: 0.5820... Generator Loss: 1.4227
Epoch 2/2... Discriminator Loss: 1.0929... Generator Loss: 0.6188
Epoch 2/2... Discriminator Loss: 0.8685... Generator Loss: 0.8132
Epoch 2/2... Discriminator Loss: 0.6660... Generator Loss: 1.5220
Epoch 2/2... Discriminator Loss: 1.0940... Generator Loss: 0.5700
Epoch 2/2... Discriminator Loss: 1.2916... Generator Loss: 0.4440
Epoch 2/2... Discriminator Loss: 0.9241... Generator Loss: 0.7692
Epoch 2/2... Discriminator Loss: 1.1483... Generator Loss: 0.5143
Epoch 2/2... Discriminator Loss: 0.9509... Generator Loss: 0.8208
Epoch 2/2... Discriminator Loss: 0.8084... Generator Loss: 0.8595
Epoch 2/2... Discriminator Loss: 1.1601... Generator Loss: 0.5028
Epoch 2/2... Discriminator Loss: 1.0232... Generator Loss: 0.6760
Epoch 2/2... Discriminator Loss: 1.5159... Generator Loss: 0.3120
Epoch 2/2... Discriminator Loss: 2.3076... Generator Loss: 0.1427
Epoch 2/2... Discriminator Loss: 3.0920... Generator Loss: 0.0796
Epoch 2/2... Discriminator Loss: 1.3233... Generator Loss: 0.5912
Epoch 2/2... Discriminator Loss: 1.1507... Generator Loss: 0.7070
Epoch 2/2... Discriminator Loss: 1.2252... Generator Loss: 0.5506
Epoch 2/2... Discriminator Loss: 1.5533... Generator Loss: 0.3182
Epoch 2/2... Discriminator Loss: 1.2478... Generator Loss: 0.5314
Epoch 2/2... Discriminator Loss: 1.1944... Generator Loss: 0.6554
Epoch 2/2... Discriminator Loss: 1.1295... Generator Loss: 0.7920
Epoch 2/2... Discriminator Loss: 0.8918... Generator Loss: 2.0624
Epoch 2/2... Discriminator Loss: 0.8656... Generator Loss: 1.3647
Epoch 2/2... Discriminator Loss: 1.1109... Generator Loss: 0.5900
Epoch 2/2... Discriminator Loss: 1.1687... Generator Loss: 0.5227
Epoch 2/2... Discriminator Loss: 0.8966... Generator Loss: 1.1041
Epoch 2/2... Discriminator Loss: 1.1697... Generator Loss: 1.8253
Epoch 2/2... Discriminator Loss: 1.0177... Generator Loss: 2.0169
Epoch 2/2... Discriminator Loss: 0.8864... Generator Loss: 0.8063
Epoch 2/2... Discriminator Loss: 1.0154... Generator Loss: 0.6554
Epoch 2/2... Discriminator Loss: 0.8976... Generator Loss: 0.8748
Epoch 2/2... Discriminator Loss: 0.9499... Generator Loss: 0.7152
Epoch 2/2... Discriminator Loss: 0.8444... Generator Loss: 1.1051
Epoch 2/2... Discriminator Loss: 0.8190... Generator Loss: 0.9878
Epoch 2/2... Discriminator Loss: 0.8948... Generator Loss: 0.7434
Epoch 2/2... Discriminator Loss: 1.1961... Generator Loss: 0.4932
Epoch 2/2... Discriminator Loss: 0.7611... Generator Loss: 1.0989
Epoch 2/2... Discriminator Loss: 1.0179... Generator Loss: 0.7047
Epoch 2/2... Discriminator Loss: 0.8142... Generator Loss: 0.8846
Epoch 2/2... Discriminator Loss: 1.0953... Generator Loss: 1.7531
Epoch 2/2... Discriminator Loss: 0.8115... Generator Loss: 1.5282
Epoch 2/2... Discriminator Loss: 1.1418... Generator Loss: 2.6756
Epoch 2/2... Discriminator Loss: 0.8379... Generator Loss: 1.5323
Epoch 2/2... Discriminator Loss: 0.8216... Generator Loss: 0.8694
Epoch 2/2... Discriminator Loss: 0.8884... Generator Loss: 0.7939
Epoch 2/2... Discriminator Loss: 0.9188... Generator Loss: 0.9408
Epoch 2/2... Discriminator Loss: 0.8324... Generator Loss: 1.1412
Epoch 2/2... Discriminator Loss: 0.7933... Generator Loss: 1.1328
Epoch 2/2... Discriminator Loss: 1.1458... Generator Loss: 0.5380
Epoch 2/2... Discriminator Loss: 0.9341... Generator Loss: 0.8055
Epoch 2/2... Discriminator Loss: 0.7356... Generator Loss: 0.9571
Epoch 2/2... Discriminator Loss: 0.9278... Generator Loss: 0.7249
Epoch 2/2... Discriminator Loss: 0.7702... Generator Loss: 1.2196
Epoch 2/2... Discriminator Loss: 1.0877... Generator Loss: 0.5843
Epoch 2/2... Discriminator Loss: 0.7884... Generator Loss: 0.9155
Epoch 2/2... Discriminator Loss: 0.7951... Generator Loss: 0.8673
Epoch 2/2... Discriminator Loss: 1.0805... Generator Loss: 0.5415
Epoch 2/2... Discriminator Loss: 0.9487... Generator Loss: 0.7879
Epoch 2/2... Discriminator Loss: 0.7779... Generator Loss: 1.1894
Epoch 2/2... Discriminator Loss: 0.8408... Generator Loss: 0.8424
Epoch 2/2... Discriminator Loss: 0.9364... Generator Loss: 0.6954
Epoch 2/2... Discriminator Loss: 0.7777... Generator Loss: 0.8945
Epoch 2/2... Discriminator Loss: 0.7986... Generator Loss: 1.7541
Epoch 2/2... Discriminator Loss: 0.7583... Generator Loss: 1.0944
Epoch 2/2... Discriminator Loss: 0.9887... Generator Loss: 0.6212
Epoch 2/2... Discriminator Loss: 0.7948... Generator Loss: 0.8708
Epoch 2/2... Discriminator Loss: 1.0281... Generator Loss: 0.5792
Epoch 2/2... Discriminator Loss: 0.8588... Generator Loss: 0.7613
Epoch 2/2... Discriminator Loss: 0.7456... Generator Loss: 1.0468
Epoch 2/2... Discriminator Loss: 0.7653... Generator Loss: 0.8973
Epoch 2/2... Discriminator Loss: 1.4107... Generator Loss: 0.3542
Epoch 2/2... Discriminator Loss: 0.9360... Generator Loss: 0.7278
Epoch 2/2... Discriminator Loss: 0.8248... Generator Loss: 1.4037
Epoch 2/2... Discriminator Loss: 1.9639... Generator Loss: 2.9732
Epoch 2/2... Discriminator Loss: 3.0865... Generator Loss: 4.7669
Epoch 2/2... Discriminator Loss: 1.9084... Generator Loss: 2.3402
Epoch 2/2... Discriminator Loss: 0.9504... Generator Loss: 0.9263
Epoch 2/2... Discriminator Loss: 0.9674... Generator Loss: 0.8557
Epoch 2/2... Discriminator Loss: 0.7480... Generator Loss: 1.0905
Epoch 2/2... Discriminator Loss: 0.7009... Generator Loss: 1.5111
Epoch 2/2... Discriminator Loss: 0.8097... Generator Loss: 0.9171
Epoch 2/2... Discriminator Loss: 1.1319... Generator Loss: 0.5543
Epoch 2/2... Discriminator Loss: 1.3337... Generator Loss: 0.4232
Epoch 2/2... Discriminator Loss: 0.6726... Generator Loss: 1.4052
Epoch 2/2... Discriminator Loss: 1.0591... Generator Loss: 0.5421
Epoch 2/2... Discriminator Loss: 0.8612... Generator Loss: 0.8169
Epoch 2/2... Discriminator Loss: 0.7584... Generator Loss: 0.9762
Epoch 2/2... Discriminator Loss: 0.8487... Generator Loss: 0.7655
Epoch 2/2... Discriminator Loss: 0.8738... Generator Loss: 0.7666
Epoch 2/2... Discriminator Loss: 0.7466... Generator Loss: 1.1974
Epoch 2/2... Discriminator Loss: 0.7835... Generator Loss: 0.9963
Epoch 2/2... Discriminator Loss: 0.8980... Generator Loss: 0.8260
Epoch 2/2... Discriminator Loss: 0.8097... Generator Loss: 0.8486
Epoch 2/2... Discriminator Loss: 0.8286... Generator Loss: 1.1147
Epoch 2/2... Discriminator Loss: 0.7504... Generator Loss: 1.0624
Epoch 2/2... Discriminator Loss: 1.0316... Generator Loss: 0.6686
Epoch 2/2... Discriminator Loss: 0.7281... Generator Loss: 0.9762
Epoch 2/2... Discriminator Loss: 0.9080... Generator Loss: 0.7415
Epoch 2/2... Discriminator Loss: 0.6082... Generator Loss: 1.1699
Epoch 2/2... Discriminator Loss: 0.8647... Generator Loss: 0.7350
Epoch 2/2... Discriminator Loss: 0.6333... Generator Loss: 1.1711
Epoch 2/2... Discriminator Loss: 0.6965... Generator Loss: 1.0366
Epoch 2/2... Discriminator Loss: 0.9488... Generator Loss: 0.6879
Epoch 2/2... Discriminator Loss: 0.8252... Generator Loss: 0.8396
Epoch 2/2... Discriminator Loss: 0.7311... Generator Loss: 1.0139
Epoch 2/2... Discriminator Loss: 0.9950... Generator Loss: 0.5911
Epoch 2/2... Discriminator Loss: 1.0337... Generator Loss: 0.5997
Epoch 2/2... Discriminator Loss: 0.5839... Generator Loss: 1.1854
Epoch 2/2... Discriminator Loss: 0.8005... Generator Loss: 0.8342
Epoch 2/2... Discriminator Loss: 1.1075... Generator Loss: 0.5728
Epoch 2/2... Discriminator Loss: 0.9171... Generator Loss: 0.7385
Epoch 2/2... Discriminator Loss: 1.0212... Generator Loss: 0.6368
Epoch 2/2... Discriminator Loss: 0.8184... Generator Loss: 0.7669
Epoch 2/2... Discriminator Loss: 0.7237... Generator Loss: 0.8709
Epoch 2/2... Discriminator Loss: 0.7906... Generator Loss: 0.8945
Epoch 2/2... Discriminator Loss: 1.0606... Generator Loss: 0.5735
Epoch 2/2... Discriminator Loss: 1.2613... Generator Loss: 0.4349
Epoch 2/2... Discriminator Loss: 1.6918... Generator Loss: 0.2504
Epoch 2/2... Discriminator Loss: 1.0554... Generator Loss: 0.6007
Epoch 2/2... Discriminator Loss: 5.0354... Generator Loss: 0.0102
Epoch 2/2... Discriminator Loss: 3.8750... Generator Loss: 5.6617
Epoch 2/2... Discriminator Loss: 1.6184... Generator Loss: 0.3216
Epoch 2/2... Discriminator Loss: 1.5641... Generator Loss: 0.3688
Epoch 2/2... Discriminator Loss: 0.8891... Generator Loss: 1.3371
Epoch 2/2... Discriminator Loss: 0.7216... Generator Loss: 1.0179
Epoch 2/2... Discriminator Loss: 0.7801... Generator Loss: 0.9570
Epoch 2/2... Discriminator Loss: 0.9203... Generator Loss: 0.8139
Epoch 2/2... Discriminator Loss: 0.9262... Generator Loss: 0.7078
Epoch 2/2... Discriminator Loss: 0.8097... Generator Loss: 1.0353
Epoch 2/2... Discriminator Loss: 0.6665... Generator Loss: 1.1387
Epoch 2/2... Discriminator Loss: 0.7272... Generator Loss: 0.9607
Epoch 2/2... Discriminator Loss: 0.7546... Generator Loss: 0.9770
Epoch 2/2... Discriminator Loss: 0.8109... Generator Loss: 0.8251
Epoch 2/2... Discriminator Loss: 0.6866... Generator Loss: 1.0693
Epoch 2/2... Discriminator Loss: 0.8570... Generator Loss: 0.7972
Epoch 2/2... Discriminator Loss: 0.8411... Generator Loss: 0.8843
Epoch 2/2... Discriminator Loss: 0.7772... Generator Loss: 0.9813
Epoch 2/2... Discriminator Loss: 0.8842... Generator Loss: 0.7875
Epoch 2/2... Discriminator Loss: 0.6069... Generator Loss: 1.2143
Epoch 2/2... Discriminator Loss: 0.8999... Generator Loss: 0.9102
Epoch 2/2... Discriminator Loss: 0.9173... Generator Loss: 0.6955
Epoch 2/2... Discriminator Loss: 0.5750... Generator Loss: 1.3741
Epoch 2/2... Discriminator Loss: 1.1305... Generator Loss: 0.5056
Epoch 2/2... Discriminator Loss: 0.7929... Generator Loss: 0.8995
Epoch 2/2... Discriminator Loss: 0.8688... Generator Loss: 0.7874
Epoch 2/2... Discriminator Loss: 0.6612... Generator Loss: 1.0305
Epoch 2/2... Discriminator Loss: 0.6339... Generator Loss: 1.3807
Epoch 2/2... Discriminator Loss: 0.5917... Generator Loss: 1.2978
Epoch 2/2... Discriminator Loss: 0.7515... Generator Loss: 0.9483
Epoch 2/2... Discriminator Loss: 0.7593... Generator Loss: 0.9202
Epoch 2/2... Discriminator Loss: 0.7564... Generator Loss: 0.9320
Epoch 2/2... Discriminator Loss: 0.6710... Generator Loss: 1.0473
Epoch 2/2... Discriminator Loss: 0.6932... Generator Loss: 1.1986
Epoch 2/2... Discriminator Loss: 0.8990... Generator Loss: 1.3662
Epoch 2/2... Discriminator Loss: 0.9414... Generator Loss: 0.6720
Epoch 2/2... Discriminator Loss: 0.8947... Generator Loss: 0.7470
Epoch 2/2... Discriminator Loss: 0.8728... Generator Loss: 0.8124
Epoch 2/2... Discriminator Loss: 0.6541... Generator Loss: 1.0475
Epoch 2/2... Discriminator Loss: 0.7454... Generator Loss: 0.9371
Epoch 2/2... Discriminator Loss: 0.8026... Generator Loss: 0.8085
Epoch 2/2... Discriminator Loss: 0.9410... Generator Loss: 0.6917
Epoch 2/2... Discriminator Loss: 1.1372... Generator Loss: 0.5095
Epoch 2/2... Discriminator Loss: 1.0785... Generator Loss: 0.5593
Epoch 2/2... Discriminator Loss: 0.7856... Generator Loss: 0.9624
Epoch 2/2... Discriminator Loss: 0.7614... Generator Loss: 0.8921
Epoch 2/2... Discriminator Loss: 0.6869... Generator Loss: 0.9445
Epoch 2/2... Discriminator Loss: 1.0423... Generator Loss: 0.6254
Epoch 2/2... Discriminator Loss: 0.6976... Generator Loss: 0.9849
Epoch 2/2... Discriminator Loss: 1.0598... Generator Loss: 0.5563
Epoch 2/2... Discriminator Loss: 1.2828... Generator Loss: 0.4751
Epoch 2/2... Discriminator Loss: 0.5919... Generator Loss: 1.7687
Epoch 2/2... Discriminator Loss: 0.8254... Generator Loss: 1.1319
Epoch 2/2... Discriminator Loss: 1.3117... Generator Loss: 2.5739
Epoch 2/2... Discriminator Loss: 3.6195... Generator Loss: 4.7986
Epoch 2/2... Discriminator Loss: 0.8406... Generator Loss: 1.8301
Epoch 2/2... Discriminator Loss: 1.2698... Generator Loss: 0.5073
Epoch 2/2... Discriminator Loss: 0.9469... Generator Loss: 0.7161
Epoch 2/2... Discriminator Loss: 1.0563... Generator Loss: 0.6483
Epoch 2/2... Discriminator Loss: 1.0108... Generator Loss: 0.6037
Epoch 2/2... Discriminator Loss: 0.9786... Generator Loss: 0.8004
Epoch 2/2... Discriminator Loss: 0.8366... Generator Loss: 0.9023
Epoch 2/2... Discriminator Loss: 0.8371... Generator Loss: 0.8729
Epoch 2/2... Discriminator Loss: 0.7197... Generator Loss: 0.9141
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-25-71b7e6ff9b41> in <module>()
     13 with tf.Graph().as_default():
     14     train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
---> 15           mnist_dataset.shape, mnist_dataset.image_mode)

<ipython-input-21-ed50e4e1017a> in train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode)
     24         sess.run(tf.global_variables_initializer())
     25         for epoch_i in range(epoch_count):
---> 26             for batch_images in get_batches(batch_size):
     27 
     28                 #images given are between -0.5 to 0.5. for tanh should be rescaled to -1,1

/output/helper.py in get_batches(self, batch_size)
    213                 self.data_files[current_index:current_index + batch_size],
    214                 *self.shape[1:3],
--> 215                 self.image_mode)
    216 
    217             current_index += batch_size

/output/helper.py in get_batch(image_files, width, height, mode)
     86 def get_batch(image_files, width, height, mode):
     87     data_batch = np.array(
---> 88         [get_image(sample_file, width, height, mode) for sample_file in image_files]).astype(np.float32)
     89 
     90     # Make sure the images are in 4 dimensions

/output/helper.py in <listcomp>(.0)
     86 def get_batch(image_files, width, height, mode):
     87     data_batch = np.array(
---> 88         [get_image(sample_file, width, height, mode) for sample_file in image_files]).astype(np.float32)
     89 
     90     # Make sure the images are in 4 dimensions

/output/helper.py in get_image(image_path, width, height, mode)
     71     :return: Image data
     72     """
---> 73     image = Image.open(image_path)
     74 
     75     if image.size != (width, height):  # HACK - Check if image is from the CELEBA dataset

/usr/local/lib/python3.5/site-packages/PIL/Image.py in open(fp, mode)
   2475 
   2476     if filename:
-> 2477         fp = builtins.open(filename, "rb")
   2478         exclusive_fp = True
   2479 

KeyboardInterrupt: 

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [ ]:
batch_size = 64
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1... Discriminator Loss: 6.2484... Generator Loss: 0.0026
Epoch 1/1... Discriminator Loss: 3.1595... Generator Loss: 0.1733
Epoch 1/1... Discriminator Loss: 3.2042... Generator Loss: 0.1024
Epoch 1/1... Discriminator Loss: 2.5086... Generator Loss: 0.1799
Epoch 1/1... Discriminator Loss: 2.3067... Generator Loss: 0.3483
Epoch 1/1... Discriminator Loss: 1.7152... Generator Loss: 0.4886
Epoch 1/1... Discriminator Loss: 1.1895... Generator Loss: 0.7718
Epoch 1/1... Discriminator Loss: 0.9979... Generator Loss: 1.2561
Epoch 1/1... Discriminator Loss: 0.7919... Generator Loss: 1.8997
Epoch 1/1... Discriminator Loss: 0.9322... Generator Loss: 0.9035
Epoch 1/1... Discriminator Loss: 0.8250... Generator Loss: 1.0052
Epoch 1/1... Discriminator Loss: 0.7503... Generator Loss: 1.1285
Epoch 1/1... Discriminator Loss: 0.6389... Generator Loss: 1.5050
Epoch 1/1... Discriminator Loss: 0.4807... Generator Loss: 1.7560
Epoch 1/1... Discriminator Loss: 0.6661... Generator Loss: 1.2735
Epoch 1/1... Discriminator Loss: 0.8752... Generator Loss: 0.7873
Epoch 1/1... Discriminator Loss: 2.1861... Generator Loss: 0.1544
Epoch 1/1... Discriminator Loss: 0.4257... Generator Loss: 2.2240
Epoch 1/1... Discriminator Loss: 1.2400... Generator Loss: 4.8535
Epoch 1/1... Discriminator Loss: 3.7182... Generator Loss: 0.0378
Epoch 1/1... Discriminator Loss: 0.9260... Generator Loss: 1.4953
Epoch 1/1... Discriminator Loss: 0.6543... Generator Loss: 4.4309
Epoch 1/1... Discriminator Loss: 2.0565... Generator Loss: 0.2745
Epoch 1/1... Discriminator Loss: 1.2836... Generator Loss: 1.0127
Epoch 1/1... Discriminator Loss: 1.5440... Generator Loss: 1.1760
Epoch 1/1... Discriminator Loss: 1.4389... Generator Loss: 1.1856
Epoch 1/1... Discriminator Loss: 1.0364... Generator Loss: 1.2084
Epoch 1/1... Discriminator Loss: 1.1808... Generator Loss: 1.0095
Epoch 1/1... Discriminator Loss: 1.2488... Generator Loss: 1.5314
Epoch 1/1... Discriminator Loss: 1.1335... Generator Loss: 1.9876
Epoch 1/1... Discriminator Loss: 1.4923... Generator Loss: 0.7048
Epoch 1/1... Discriminator Loss: 1.8236... Generator Loss: 0.4441
Epoch 1/1... Discriminator Loss: 1.5386... Generator Loss: 0.4712
Epoch 1/1... Discriminator Loss: 1.0848... Generator Loss: 0.8965
Epoch 1/1... Discriminator Loss: 1.0360... Generator Loss: 1.2143
Epoch 1/1... Discriminator Loss: 1.6615... Generator Loss: 0.3824
Epoch 1/1... Discriminator Loss: 1.8258... Generator Loss: 0.2796
Epoch 1/1... Discriminator Loss: 1.4517... Generator Loss: 0.5029
Epoch 1/1... Discriminator Loss: 0.9600... Generator Loss: 1.0387
Epoch 1/1... Discriminator Loss: 0.9220... Generator Loss: 1.6923
Epoch 1/1... Discriminator Loss: 1.0458... Generator Loss: 1.4546
Epoch 1/1... Discriminator Loss: 1.0720... Generator Loss: 1.5198
Epoch 1/1... Discriminator Loss: 1.3102... Generator Loss: 1.3540
Epoch 1/1... Discriminator Loss: 1.2404... Generator Loss: 0.8338
Epoch 1/1... Discriminator Loss: 1.0837... Generator Loss: 1.5467
Epoch 1/1... Discriminator Loss: 1.1884... Generator Loss: 2.3616
Epoch 1/1... Discriminator Loss: 0.8769... Generator Loss: 1.3244
Epoch 1/1... Discriminator Loss: 1.2484... Generator Loss: 0.7432
Epoch 1/1... Discriminator Loss: 1.0909... Generator Loss: 0.6903
Epoch 1/1... Discriminator Loss: 1.1279... Generator Loss: 0.6379
Epoch 1/1... Discriminator Loss: 0.9937... Generator Loss: 1.0997
Epoch 1/1... Discriminator Loss: 1.1176... Generator Loss: 1.5743
Epoch 1/1... Discriminator Loss: 1.1303... Generator Loss: 1.1167
Epoch 1/1... Discriminator Loss: 0.8605... Generator Loss: 1.5732
Epoch 1/1... Discriminator Loss: 1.0170... Generator Loss: 1.8070
Epoch 1/1... Discriminator Loss: 0.9592... Generator Loss: 1.0547
Epoch 1/1... Discriminator Loss: 1.0513... Generator Loss: 1.0099
Epoch 1/1... Discriminator Loss: 1.4209... Generator Loss: 0.5972
Epoch 1/1... Discriminator Loss: 1.3720... Generator Loss: 0.4904
Epoch 1/1... Discriminator Loss: 1.4479... Generator Loss: 0.5048
Epoch 1/1... Discriminator Loss: 1.5557... Generator Loss: 0.3768
Epoch 1/1... Discriminator Loss: 1.1041... Generator Loss: 0.8894
Epoch 1/1... Discriminator Loss: 1.1825... Generator Loss: 1.5052
Epoch 1/1... Discriminator Loss: 1.3158... Generator Loss: 1.4796
Epoch 1/1... Discriminator Loss: 0.9985... Generator Loss: 1.0614
Epoch 1/1... Discriminator Loss: 1.1506... Generator Loss: 1.1384
Epoch 1/1... Discriminator Loss: 1.1767... Generator Loss: 1.0796
Epoch 1/1... Discriminator Loss: 1.1636... Generator Loss: 0.9213
Epoch 1/1... Discriminator Loss: 1.4681... Generator Loss: 0.7849
Epoch 1/1... Discriminator Loss: 1.4550... Generator Loss: 0.5671
Epoch 1/1... Discriminator Loss: 1.1843... Generator Loss: 0.7735
Epoch 1/1... Discriminator Loss: 1.2937... Generator Loss: 0.6539
Epoch 1/1... Discriminator Loss: 1.2261... Generator Loss: 0.5600
Epoch 1/1... Discriminator Loss: 1.6536... Generator Loss: 0.3364
Epoch 1/1... Discriminator Loss: 1.0531... Generator Loss: 0.8765
Epoch 1/1... Discriminator Loss: 0.7324... Generator Loss: 1.6684
Epoch 1/1... Discriminator Loss: 1.2814... Generator Loss: 0.6452
Epoch 1/1... Discriminator Loss: 1.1409... Generator Loss: 0.7100
Epoch 1/1... Discriminator Loss: 1.0092... Generator Loss: 1.1866
Epoch 1/1... Discriminator Loss: 1.3963... Generator Loss: 0.4503
Epoch 1/1... Discriminator Loss: 1.1831... Generator Loss: 0.5551
Epoch 1/1... Discriminator Loss: 1.1346... Generator Loss: 0.8169
Epoch 1/1... Discriminator Loss: 1.6355... Generator Loss: 0.3999
Epoch 1/1... Discriminator Loss: 1.2925... Generator Loss: 0.7729
Epoch 1/1... Discriminator Loss: 1.5035... Generator Loss: 0.5580
Epoch 1/1... Discriminator Loss: 1.2730... Generator Loss: 0.5642
Epoch 1/1... Discriminator Loss: 1.3809... Generator Loss: 0.5451
Epoch 1/1... Discriminator Loss: 1.2060... Generator Loss: 1.1038
Epoch 1/1... Discriminator Loss: 1.3121... Generator Loss: 0.7537
Epoch 1/1... Discriminator Loss: 0.9437... Generator Loss: 1.3054
Epoch 1/1... Discriminator Loss: 0.7838... Generator Loss: 1.0975
Epoch 1/1... Discriminator Loss: 0.8393... Generator Loss: 1.0102
Epoch 1/1... Discriminator Loss: 1.0310... Generator Loss: 1.0983
Epoch 1/1... Discriminator Loss: 1.0171... Generator Loss: 0.8152
Epoch 1/1... Discriminator Loss: 1.0126... Generator Loss: 0.8575
Epoch 1/1... Discriminator Loss: 1.0549... Generator Loss: 1.0723
Epoch 1/1... Discriminator Loss: 1.2003... Generator Loss: 2.5479
Epoch 1/1... Discriminator Loss: 1.2135... Generator Loss: 0.5737
Epoch 1/1... Discriminator Loss: 1.5643... Generator Loss: 0.3859
Epoch 1/1... Discriminator Loss: 1.3475... Generator Loss: 0.7189
Epoch 1/1... Discriminator Loss: 1.4661... Generator Loss: 0.5471
Epoch 1/1... Discriminator Loss: 1.3048... Generator Loss: 0.6444
Epoch 1/1... Discriminator Loss: 1.3414... Generator Loss: 0.6155
Epoch 1/1... Discriminator Loss: 0.9817... Generator Loss: 1.1990
Epoch 1/1... Discriminator Loss: 0.7761... Generator Loss: 1.1049
Epoch 1/1... Discriminator Loss: 1.1107... Generator Loss: 0.6817
Epoch 1/1... Discriminator Loss: 0.9767... Generator Loss: 0.9130
Epoch 1/1... Discriminator Loss: 1.3605... Generator Loss: 1.0491
Epoch 1/1... Discriminator Loss: 1.6234... Generator Loss: 1.4463
Epoch 1/1... Discriminator Loss: 1.6967... Generator Loss: 2.5639
Epoch 1/1... Discriminator Loss: 1.3771... Generator Loss: 0.5021
Epoch 1/1... Discriminator Loss: 1.1946... Generator Loss: 0.5872
Epoch 1/1... Discriminator Loss: 1.3754... Generator Loss: 0.4848
Epoch 1/1... Discriminator Loss: 1.2099... Generator Loss: 0.6407
Epoch 1/1... Discriminator Loss: 1.5239... Generator Loss: 0.6492
Epoch 1/1... Discriminator Loss: 1.2278... Generator Loss: 1.0453
Epoch 1/1... Discriminator Loss: 1.0107... Generator Loss: 0.9659
Epoch 1/1... Discriminator Loss: 1.3909... Generator Loss: 0.5032
Epoch 1/1... Discriminator Loss: 1.3627... Generator Loss: 0.4969
Epoch 1/1... Discriminator Loss: 1.2814... Generator Loss: 0.6194
Epoch 1/1... Discriminator Loss: 1.3688... Generator Loss: 0.5652
Epoch 1/1... Discriminator Loss: 0.8284... Generator Loss: 1.2124
Epoch 1/1... Discriminator Loss: 0.8371... Generator Loss: 1.4910
Epoch 1/1... Discriminator Loss: 1.2667... Generator Loss: 0.5001
Epoch 1/1... Discriminator Loss: 1.3093... Generator Loss: 0.5491
Epoch 1/1... Discriminator Loss: 1.0324... Generator Loss: 1.4002
Epoch 1/1... Discriminator Loss: 1.3460... Generator Loss: 1.2535
Epoch 1/1... Discriminator Loss: 1.1070... Generator Loss: 1.0160
Epoch 1/1... Discriminator Loss: 1.5838... Generator Loss: 0.3415
Epoch 1/1... Discriminator Loss: 1.3678... Generator Loss: 0.5670
Epoch 1/1... Discriminator Loss: 1.2638... Generator Loss: 1.5957
Epoch 1/1... Discriminator Loss: 1.1388... Generator Loss: 0.8054
Epoch 1/1... Discriminator Loss: 1.4960... Generator Loss: 0.4972
Epoch 1/1... Discriminator Loss: 0.9733... Generator Loss: 1.0254
Epoch 1/1... Discriminator Loss: 1.1108... Generator Loss: 0.8420
Epoch 1/1... Discriminator Loss: 1.2661... Generator Loss: 0.6987
Epoch 1/1... Discriminator Loss: 1.3590... Generator Loss: 1.2956
Epoch 1/1... Discriminator Loss: 1.1533... Generator Loss: 1.1518
Epoch 1/1... Discriminator Loss: 1.1755... Generator Loss: 0.6260
Epoch 1/1... Discriminator Loss: 1.3278... Generator Loss: 0.5693
Epoch 1/1... Discriminator Loss: 1.3736... Generator Loss: 0.5321
Epoch 1/1... Discriminator Loss: 1.6448... Generator Loss: 0.7350
Epoch 1/1... Discriminator Loss: 1.2881... Generator Loss: 0.7429
Epoch 1/1... Discriminator Loss: 1.1857... Generator Loss: 1.0102
Epoch 1/1... Discriminator Loss: 1.1924... Generator Loss: 0.8013
Epoch 1/1... Discriminator Loss: 1.3298... Generator Loss: 0.7881
Epoch 1/1... Discriminator Loss: 1.3075... Generator Loss: 0.9529
Epoch 1/1... Discriminator Loss: 1.2598... Generator Loss: 1.2271
Epoch 1/1... Discriminator Loss: 1.3733... Generator Loss: 0.9581
Epoch 1/1... Discriminator Loss: 1.1345... Generator Loss: 0.9227
Epoch 1/1... Discriminator Loss: 1.4827... Generator Loss: 0.5758
Epoch 1/1... Discriminator Loss: 1.3782... Generator Loss: 0.7714
Epoch 1/1... Discriminator Loss: 1.4675... Generator Loss: 0.4896
Epoch 1/1... Discriminator Loss: 1.4312... Generator Loss: 0.6144
Epoch 1/1... Discriminator Loss: 1.1721... Generator Loss: 0.6588
Epoch 1/1... Discriminator Loss: 1.1802... Generator Loss: 0.9266
Epoch 1/1... Discriminator Loss: 1.3482... Generator Loss: 0.8058
Epoch 1/1... Discriminator Loss: 1.6520... Generator Loss: 1.1708
Epoch 1/1... Discriminator Loss: 1.7021... Generator Loss: 2.0699
Epoch 1/1... Discriminator Loss: 1.1985... Generator Loss: 1.0387
Epoch 1/1... Discriminator Loss: 1.3677... Generator Loss: 0.6556
Epoch 1/1... Discriminator Loss: 1.1526... Generator Loss: 0.8344
Epoch 1/1... Discriminator Loss: 1.2160... Generator Loss: 0.6521
Epoch 1/1... Discriminator Loss: 1.4483... Generator Loss: 1.3980
Epoch 1/1... Discriminator Loss: 1.4019... Generator Loss: 1.4663
Epoch 1/1... Discriminator Loss: 1.2798... Generator Loss: 0.8566
Epoch 1/1... Discriminator Loss: 1.3631... Generator Loss: 0.6739
Epoch 1/1... Discriminator Loss: 1.4341... Generator Loss: 0.9749
Epoch 1/1... Discriminator Loss: 1.4176... Generator Loss: 0.7741
Epoch 1/1... Discriminator Loss: 1.3504... Generator Loss: 0.8599
Epoch 1/1... Discriminator Loss: 1.3917... Generator Loss: 0.4804
Epoch 1/1... Discriminator Loss: 1.5349... Generator Loss: 0.5355
Epoch 1/1... Discriminator Loss: 1.3080... Generator Loss: 1.0252
Epoch 1/1... Discriminator Loss: 0.9403... Generator Loss: 1.0847
Epoch 1/1... Discriminator Loss: 1.0115... Generator Loss: 0.8172
Epoch 1/1... Discriminator Loss: 1.2570... Generator Loss: 0.7401
Epoch 1/1... Discriminator Loss: 1.6157... Generator Loss: 0.7468
Epoch 1/1... Discriminator Loss: 1.2538... Generator Loss: 0.6979
Epoch 1/1... Discriminator Loss: 1.1940... Generator Loss: 0.6941
Epoch 1/1... Discriminator Loss: 1.5725... Generator Loss: 0.6728
Epoch 1/1... Discriminator Loss: 1.3880... Generator Loss: 0.7355
Epoch 1/1... Discriminator Loss: 1.3429... Generator Loss: 0.7315
Epoch 1/1... Discriminator Loss: 1.5280... Generator Loss: 0.8012
Epoch 1/1... Discriminator Loss: 1.5629... Generator Loss: 0.8530
Epoch 1/1... Discriminator Loss: 1.2544... Generator Loss: 0.6357
Epoch 1/1... Discriminator Loss: 1.3496... Generator Loss: 0.6460
Epoch 1/1... Discriminator Loss: 1.3636... Generator Loss: 0.8292
Epoch 1/1... Discriminator Loss: 1.4221... Generator Loss: 0.7198
Epoch 1/1... Discriminator Loss: 1.2446... Generator Loss: 0.9755
Epoch 1/1... Discriminator Loss: 1.3337... Generator Loss: 1.0433
Epoch 1/1... Discriminator Loss: 1.6543... Generator Loss: 0.6334
Epoch 1/1... Discriminator Loss: 1.4819... Generator Loss: 0.5320
Epoch 1/1... Discriminator Loss: 1.4583... Generator Loss: 0.4477
Epoch 1/1... Discriminator Loss: 1.4496... Generator Loss: 0.5745
Epoch 1/1... Discriminator Loss: 1.4136... Generator Loss: 0.8117
Epoch 1/1... Discriminator Loss: 1.2662... Generator Loss: 0.7752
Epoch 1/1... Discriminator Loss: 1.3033... Generator Loss: 0.7033
Epoch 1/1... Discriminator Loss: 1.3754... Generator Loss: 0.8037
Epoch 1/1... Discriminator Loss: 1.3543... Generator Loss: 0.7605
Epoch 1/1... Discriminator Loss: 1.4022... Generator Loss: 0.7431
Epoch 1/1... Discriminator Loss: 1.4646... Generator Loss: 0.4801
Epoch 1/1... Discriminator Loss: 1.4131... Generator Loss: 0.5825
Epoch 1/1... Discriminator Loss: 1.3673... Generator Loss: 0.9009
Epoch 1/1... Discriminator Loss: 1.5869... Generator Loss: 1.4674
Epoch 1/1... Discriminator Loss: 1.4332... Generator Loss: 0.7679
Epoch 1/1... Discriminator Loss: 1.5854... Generator Loss: 0.5355
Epoch 1/1... Discriminator Loss: 1.5877... Generator Loss: 0.6369
Epoch 1/1... Discriminator Loss: 1.6750... Generator Loss: 0.4514
Epoch 1/1... Discriminator Loss: 1.2745... Generator Loss: 0.7470
Epoch 1/1... Discriminator Loss: 1.3948... Generator Loss: 0.7171
Epoch 1/1... Discriminator Loss: 1.5207... Generator Loss: 0.5293
Epoch 1/1... Discriminator Loss: 1.4232... Generator Loss: 0.7347
Epoch 1/1... Discriminator Loss: 1.4163... Generator Loss: 0.7394
Epoch 1/1... Discriminator Loss: 1.6048... Generator Loss: 0.4189
Epoch 1/1... Discriminator Loss: 1.3870... Generator Loss: 0.5055
Epoch 1/1... Discriminator Loss: 1.4299... Generator Loss: 0.7063
Epoch 1/1... Discriminator Loss: 1.5720... Generator Loss: 0.6155
Epoch 1/1... Discriminator Loss: 1.5984... Generator Loss: 0.4697
Epoch 1/1... Discriminator Loss: 1.4484... Generator Loss: 0.5326
Epoch 1/1... Discriminator Loss: 1.5827... Generator Loss: 0.5515
Epoch 1/1... Discriminator Loss: 1.3935... Generator Loss: 0.6871
Epoch 1/1... Discriminator Loss: 1.4119... Generator Loss: 1.0029
Epoch 1/1... Discriminator Loss: 1.4532... Generator Loss: 0.5838
Epoch 1/1... Discriminator Loss: 1.4663... Generator Loss: 0.9151
Epoch 1/1... Discriminator Loss: 1.3255... Generator Loss: 0.7266
Epoch 1/1... Discriminator Loss: 1.6263... Generator Loss: 0.5522
Epoch 1/1... Discriminator Loss: 1.4761... Generator Loss: 0.5776
Epoch 1/1... Discriminator Loss: 1.5236... Generator Loss: 0.5441
Epoch 1/1... Discriminator Loss: 1.2609... Generator Loss: 0.6944
Epoch 1/1... Discriminator Loss: 1.0711... Generator Loss: 0.9742
Epoch 1/1... Discriminator Loss: 1.3890... Generator Loss: 0.6194
Epoch 1/1... Discriminator Loss: 1.5579... Generator Loss: 0.7934
Epoch 1/1... Discriminator Loss: 1.5529... Generator Loss: 0.6992
Epoch 1/1... Discriminator Loss: 1.5980... Generator Loss: 0.5607
Epoch 1/1... Discriminator Loss: 1.3624... Generator Loss: 0.7595
Epoch 1/1... Discriminator Loss: 1.4268... Generator Loss: 0.6163
Epoch 1/1... Discriminator Loss: 1.3149... Generator Loss: 0.8331
Epoch 1/1... Discriminator Loss: 1.3746... Generator Loss: 1.0781
Epoch 1/1... Discriminator Loss: 1.2432... Generator Loss: 1.1410
Epoch 1/1... Discriminator Loss: 1.3628... Generator Loss: 0.6836
Epoch 1/1... Discriminator Loss: 1.3998... Generator Loss: 0.9753
Epoch 1/1... Discriminator Loss: 1.7112... Generator Loss: 0.4640
Epoch 1/1... Discriminator Loss: 1.9284... Generator Loss: 0.2966
Epoch 1/1... Discriminator Loss: 1.4686... Generator Loss: 0.7544
Epoch 1/1... Discriminator Loss: 1.3099... Generator Loss: 0.7206
Epoch 1/1... Discriminator Loss: 1.1884... Generator Loss: 0.8259
Epoch 1/1... Discriminator Loss: 1.1869... Generator Loss: 0.8049
Epoch 1/1... Discriminator Loss: 1.2306... Generator Loss: 0.7270
Epoch 1/1... Discriminator Loss: 1.4186... Generator Loss: 0.6904
Epoch 1/1... Discriminator Loss: 1.3683... Generator Loss: 0.8718
Epoch 1/1... Discriminator Loss: 1.4037... Generator Loss: 0.9128
Epoch 1/1... Discriminator Loss: 1.4223... Generator Loss: 0.7542
Epoch 1/1... Discriminator Loss: 1.3686... Generator Loss: 0.6535
Epoch 1/1... Discriminator Loss: 1.1780... Generator Loss: 0.7286
Epoch 1/1... Discriminator Loss: 1.3312... Generator Loss: 0.6311
Epoch 1/1... Discriminator Loss: 1.3496... Generator Loss: 0.8275
Epoch 1/1... Discriminator Loss: 1.4096... Generator Loss: 0.6050
Epoch 1/1... Discriminator Loss: 1.3074... Generator Loss: 0.7102
Epoch 1/1... Discriminator Loss: 1.2049... Generator Loss: 1.1403
Epoch 1/1... Discriminator Loss: 1.3231... Generator Loss: 0.7880
Epoch 1/1... Discriminator Loss: 1.2165... Generator Loss: 1.0051
Epoch 1/1... Discriminator Loss: 1.2783... Generator Loss: 0.6459
Epoch 1/1... Discriminator Loss: 1.2304... Generator Loss: 0.6834
Epoch 1/1... Discriminator Loss: 1.4893... Generator Loss: 0.5405
Epoch 1/1... Discriminator Loss: 1.3176... Generator Loss: 0.5575
Epoch 1/1... Discriminator Loss: 1.3787... Generator Loss: 0.5871
Epoch 1/1... Discriminator Loss: 1.1764... Generator Loss: 1.1629
Epoch 1/1... Discriminator Loss: 1.2273... Generator Loss: 1.0936
Epoch 1/1... Discriminator Loss: 1.2082... Generator Loss: 0.6787
Epoch 1/1... Discriminator Loss: 1.6172... Generator Loss: 0.3959
Epoch 1/1... Discriminator Loss: 0.9389... Generator Loss: 1.0231
Epoch 1/1... Discriminator Loss: 1.1825... Generator Loss: 1.3819
Epoch 1/1... Discriminator Loss: 1.3904... Generator Loss: 0.7023
Epoch 1/1... Discriminator Loss: 1.3674... Generator Loss: 1.0017
Epoch 1/1... Discriminator Loss: 1.3190... Generator Loss: 0.7498
Epoch 1/1... Discriminator Loss: 1.4461... Generator Loss: 0.9390
Epoch 1/1... Discriminator Loss: 1.2684... Generator Loss: 0.6902
Epoch 1/1... Discriminator Loss: 1.1480... Generator Loss: 0.8111
Epoch 1/1... Discriminator Loss: 1.0337... Generator Loss: 1.1060
Epoch 1/1... Discriminator Loss: 1.3712... Generator Loss: 0.6777
Epoch 1/1... Discriminator Loss: 1.2999... Generator Loss: 0.7016
Epoch 1/1... Discriminator Loss: 1.4285... Generator Loss: 0.5950
Epoch 1/1... Discriminator Loss: 1.2199... Generator Loss: 0.8235
Epoch 1/1... Discriminator Loss: 1.1052... Generator Loss: 0.8535
Epoch 1/1... Discriminator Loss: 1.2470... Generator Loss: 0.6583
Epoch 1/1... Discriminator Loss: 1.6261... Generator Loss: 0.3609
Epoch 1/1... Discriminator Loss: 1.6579... Generator Loss: 0.3408
Epoch 1/1... Discriminator Loss: 1.5494... Generator Loss: 0.4339
Epoch 1/1... Discriminator Loss: 1.2769... Generator Loss: 0.7001
Epoch 1/1... Discriminator Loss: 1.2772... Generator Loss: 0.8831
Epoch 1/1... Discriminator Loss: 1.1785... Generator Loss: 1.3671
Epoch 1/1... Discriminator Loss: 1.3110... Generator Loss: 0.8974
Epoch 1/1... Discriminator Loss: 1.3217... Generator Loss: 0.9295
Epoch 1/1... Discriminator Loss: 1.3088... Generator Loss: 0.5919
Epoch 1/1... Discriminator Loss: 1.0676... Generator Loss: 1.3705
Epoch 1/1... Discriminator Loss: 1.4043... Generator Loss: 2.6558
Epoch 1/1... Discriminator Loss: 1.7046... Generator Loss: 1.3041
Epoch 1/1... Discriminator Loss: 1.1085... Generator Loss: 0.7713
Epoch 1/1... Discriminator Loss: 1.2759... Generator Loss: 0.6973
Epoch 1/1... Discriminator Loss: 1.6340... Generator Loss: 1.0435
Epoch 1/1... Discriminator Loss: 1.4581... Generator Loss: 0.5562
Epoch 1/1... Discriminator Loss: 1.1941... Generator Loss: 0.5315
Epoch 1/1... Discriminator Loss: 1.6592... Generator Loss: 0.4438
Epoch 1/1... Discriminator Loss: 1.0671... Generator Loss: 0.6411
Epoch 1/1... Discriminator Loss: 1.3723... Generator Loss: 0.6995
Epoch 1/1... Discriminator Loss: 1.2659... Generator Loss: 1.0694
Epoch 1/1... Discriminator Loss: 1.3512... Generator Loss: 0.8183
Epoch 1/1... Discriminator Loss: 1.2148... Generator Loss: 0.9645
Epoch 1/1... Discriminator Loss: 1.4438... Generator Loss: 0.5628
Epoch 1/1... Discriminator Loss: 1.2898... Generator Loss: 0.7287
Epoch 1/1... Discriminator Loss: 1.3766... Generator Loss: 0.6714
Epoch 1/1... Discriminator Loss: 1.3154... Generator Loss: 0.8199
Epoch 1/1... Discriminator Loss: 1.3618... Generator Loss: 0.6549
Epoch 1/1... Discriminator Loss: 1.4633... Generator Loss: 0.7816
Epoch 1/1... Discriminator Loss: 1.3929... Generator Loss: 0.8491
Epoch 1/1... Discriminator Loss: 1.4404... Generator Loss: 0.6469
Epoch 1/1... Discriminator Loss: 1.3016... Generator Loss: 0.6947
Epoch 1/1... Discriminator Loss: 1.0580... Generator Loss: 0.8620
Epoch 1/1... Discriminator Loss: 1.4736... Generator Loss: 0.9149
Epoch 1/1... Discriminator Loss: 1.3479... Generator Loss: 0.6418
Epoch 1/1... Discriminator Loss: 1.2285... Generator Loss: 0.6970
Epoch 1/1... Discriminator Loss: 1.3583... Generator Loss: 0.9308
Epoch 1/1... Discriminator Loss: 1.2034... Generator Loss: 0.8624
Epoch 1/1... Discriminator Loss: 1.3447... Generator Loss: 0.6587
Epoch 1/1... Discriminator Loss: 1.4391... Generator Loss: 0.6375
Epoch 1/1... Discriminator Loss: 1.2773... Generator Loss: 1.0006
Epoch 1/1... Discriminator Loss: 1.2431... Generator Loss: 0.6010
Epoch 1/1... Discriminator Loss: 1.1569... Generator Loss: 0.7286
Epoch 1/1... Discriminator Loss: 1.4520... Generator Loss: 0.6099
Epoch 1/1... Discriminator Loss: 1.0938... Generator Loss: 0.9935
Epoch 1/1... Discriminator Loss: 1.1506... Generator Loss: 1.1634
Epoch 1/1... Discriminator Loss: 1.5423... Generator Loss: 0.3620
Epoch 1/1... Discriminator Loss: 0.9188... Generator Loss: 0.8147
Epoch 1/1... Discriminator Loss: 1.4277... Generator Loss: 1.4451
Epoch 1/1... Discriminator Loss: 1.3840... Generator Loss: 0.4683
Epoch 1/1... Discriminator Loss: 1.3668... Generator Loss: 0.9833
Epoch 1/1... Discriminator Loss: 1.3238... Generator Loss: 0.5350
Epoch 1/1... Discriminator Loss: 1.3720... Generator Loss: 0.4263
Epoch 1/1... Discriminator Loss: 1.6518... Generator Loss: 0.3011
Epoch 1/1... Discriminator Loss: 1.3771... Generator Loss: 0.4384
Epoch 1/1... Discriminator Loss: 1.1944... Generator Loss: 0.7021
Epoch 1/1... Discriminator Loss: 1.2506... Generator Loss: 1.0330
Epoch 1/1... Discriminator Loss: 1.0869... Generator Loss: 1.4321
Epoch 1/1... Discriminator Loss: 1.3013... Generator Loss: 1.4923
Epoch 1/1... Discriminator Loss: 1.1828... Generator Loss: 1.2576
Epoch 1/1... Discriminator Loss: 1.1136... Generator Loss: 1.1190
Epoch 1/1... Discriminator Loss: 1.0351... Generator Loss: 0.8518
Epoch 1/1... Discriminator Loss: 1.2449... Generator Loss: 0.8525
Epoch 1/1... Discriminator Loss: 1.3313... Generator Loss: 0.7399
Epoch 1/1... Discriminator Loss: 1.4417... Generator Loss: 0.5698
Epoch 1/1... Discriminator Loss: 1.6012... Generator Loss: 0.7487
Epoch 1/1... Discriminator Loss: 1.1381... Generator Loss: 0.8962
Epoch 1/1... Discriminator Loss: 1.6039... Generator Loss: 0.3627

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.