In [ ]:
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer
In [ ]:
# Prepare training documents from a list of (id, text, label) tuples.
training = spark.createDataFrame([
(0, "a b c d e spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.0),
(3, "hadoop mapreduce", 0.0)
], ["id", "text", "label"])
In [ ]:
# Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
# featuresCol="features" by default in LR
lr = LogisticRegression(maxIter=10, regParam=0.001)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
In [ ]:
# Fit the pipeline to training documents.
model = pipeline.fit(training)
In [ ]:
# Prepare test documents, which are unlabeled (id, text) tuples.
test = spark.createDataFrame([
(4, "spark i j k"),
(5, "l m n"),
(6, "spark hadoop spark"),
(7, "apache hadoop")
], ["id", "text"])
In [ ]:
# Make predictions on test documents and print columns of interest.
prediction = model.transform(test)
selected = prediction.select("id", "text", "probability", "prediction")
In [ ]:
for row in selected.collect():
rid, text, prob, prediction = row
print("(%d, %s) --> prob=%s, prediction=%f" % (rid, text, str(prob), prediction))
In [ ]: