In [4]:
import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
Y = np.array([1, 1, 1, 2, 2, 2])
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X, Y, shape(1))
GaussianNB(priors=None)
print(clf.predict([[-0.8, -1]]))
In [7]:
# dataframe
import numpy
import pandas
myarray = numpy.array([[1, 2, 3], [4, 5, 6]])
rownames = ['a', 'b']
colnames = ['one', 'two', 'three']
mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames)
print(mydataframe)
In [2]:
# Load CSV using Pandas from URL
from pandas import read_csv
url = "https://goo.gl/vhm1eU"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(url, names=names)
print(data.shape)
#print(data)
In [1]:
# Statistical Summary
import pandas
url = "https://goo.gl/vhm1eU"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = pandas.read_csv(url, names=names)
description = data.describe()
print(description)
In [3]:
# Scatter Plot Matrix
import matplotlib.pyplot as plt
import pandas
from pandas.plotting import scatter_matrix
url = "https://goo.gl/vhm1eU"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = pandas.read_csv(url, names=names)
scatter_matrix(data)
plt.show()
In [ ]: