In [2]:
%matplotlib inline
import scipy.io as sio
import numpy as np
import boltons.statsutils as bs
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
In [3]:
vals = sio.loadmat('A2.mat')
A2 = vals['A2']
indep,dep = A2[:,0],A2[:,1]
mean = np.mean(dep)
median = np.median(dep)
depl=dep.tolist()
trimean=bs.trimean(depl)
MAD = bs.median_abs_dev(depl)
IQR = bs.iqr(depl)
std = np.std(dep)
data = pd.DataFrame()
data['year'] = indep
data['value'] = dep
sns.set_style("whitegrid")
print mean
print median
print trimean
print MAD
print IQR
print std
In [4]:
sns.boxplot(y=dep)
Out[4]:
In [9]:
sns.lmplot('year','value', data=data, fit_reg=False)
Out[9]:
In [5]:
import scipy.stats as sp
print sp.pearsonr(indep,dep)
print sp.spearmanr(indep,dep)
In [21]:
sns.distplot(dep)
Out[21]:
In [7]:
autocor=np.correlate(dep, dep, mode='full')[len(dep)-1:]
print autocor
In [14]:
from statsmodels.tsa.stattools import acf
autocorr = acf(dep)
plt.plot(autocorr,marker='o',linestyle='--')
Out[14]:
In [15]:
sp.zscore(dep)
Out[15]:
In [ ]: