In [2]:
import pandas as pd
In [6]:
train_data = pd.read_csv('../Dataset/Train_nyOWmfK.csv', encoding = "ISO-8859-1")
test_data = pd.read_csv('../Dataset/Test_bCtAN1w.csv', encoding = "ISO-8859-1")
In [10]:
train_data.head()
Out[10]:
ID
Gender
City
Monthly_Income
DOB
Lead_Creation_Date
Loan_Amount_Applied
Loan_Tenure_Applied
Existing_EMI
Employer_Name
...
Interest_Rate
Processing_Fee
EMI_Loan_Submitted
Filled_Form
Device_Type
Var2
Source
Var4
LoggedIn
Disbursed
0
ID000002C20
Female
Delhi
20000
23-May-78
15-May-15
300000.0
5.0
0.0
CYBOSOL
...
NaN
NaN
NaN
N
Web-browser
G
S122
1
0
0
1
ID000004E40
Male
Mumbai
35000
07-Oct-85
04-May-15
200000.0
2.0
0.0
TATA CONSULTANCY SERVICES LTD (TCS)
...
13.25
NaN
6762.9
N
Web-browser
G
S122
3
0
0
2
ID000007H20
Male
Panchkula
22500
10-Oct-81
19-May-15
600000.0
4.0
0.0
ALCHEMIST HOSPITALS LTD
...
NaN
NaN
NaN
N
Web-browser
B
S143
1
0
0
3
ID000008I30
Male
Saharsa
35000
30-Nov-87
09-May-15
1000000.0
5.0
0.0
BIHAR GOVERNMENT
...
NaN
NaN
NaN
N
Web-browser
B
S143
3
0
0
4
ID000009J40
Male
Bengaluru
100000
17-Feb-84
20-May-15
500000.0
2.0
25000.0
GLOBAL EDGE SOFTWARE
...
NaN
NaN
NaN
N
Web-browser
B
S134
3
1
0
5 rows × 26 columns
In [12]:
train_data.isnull().sum()
Out[12]:
ID 0
Gender 0
City 1003
Monthly_Income 0
DOB 0
Lead_Creation_Date 0
Loan_Amount_Applied 71
Loan_Tenure_Applied 71
Existing_EMI 71
Employer_Name 71
Salary_Account 11764
Mobile_Verified 0
Var5 0
Var1 0
Loan_Amount_Submitted 34613
Loan_Tenure_Submitted 34613
Interest_Rate 59294
Processing_Fee 59600
EMI_Loan_Submitted 59294
Filled_Form 0
Device_Type 0
Var2 0
Source 0
Var4 0
LoggedIn 0
Disbursed 0
dtype: int64
In [ ]:
Content source: Zhenxingzhang/AnalyticsVidhya
Similar notebooks: