In [2]:
import pandas as pd

In [6]:
train_data = pd.read_csv('../Dataset/Train_nyOWmfK.csv', encoding = "ISO-8859-1")
test_data = pd.read_csv('../Dataset/Test_bCtAN1w.csv', encoding = "ISO-8859-1")

In [10]:
train_data.head()


Out[10]:
ID Gender City Monthly_Income DOB Lead_Creation_Date Loan_Amount_Applied Loan_Tenure_Applied Existing_EMI Employer_Name ... Interest_Rate Processing_Fee EMI_Loan_Submitted Filled_Form Device_Type Var2 Source Var4 LoggedIn Disbursed
0 ID000002C20 Female Delhi 20000 23-May-78 15-May-15 300000.0 5.0 0.0 CYBOSOL ... NaN NaN NaN N Web-browser G S122 1 0 0
1 ID000004E40 Male Mumbai 35000 07-Oct-85 04-May-15 200000.0 2.0 0.0 TATA CONSULTANCY SERVICES LTD (TCS) ... 13.25 NaN 6762.9 N Web-browser G S122 3 0 0
2 ID000007H20 Male Panchkula 22500 10-Oct-81 19-May-15 600000.0 4.0 0.0 ALCHEMIST HOSPITALS LTD ... NaN NaN NaN N Web-browser B S143 1 0 0
3 ID000008I30 Male Saharsa 35000 30-Nov-87 09-May-15 1000000.0 5.0 0.0 BIHAR GOVERNMENT ... NaN NaN NaN N Web-browser B S143 3 0 0
4 ID000009J40 Male Bengaluru 100000 17-Feb-84 20-May-15 500000.0 2.0 25000.0 GLOBAL EDGE SOFTWARE ... NaN NaN NaN N Web-browser B S134 3 1 0

5 rows × 26 columns


In [12]:
train_data.isnull().sum()


Out[12]:
ID                           0
Gender                       0
City                      1003
Monthly_Income               0
DOB                          0
Lead_Creation_Date           0
Loan_Amount_Applied         71
Loan_Tenure_Applied         71
Existing_EMI                71
Employer_Name               71
Salary_Account           11764
Mobile_Verified              0
Var5                         0
Var1                         0
Loan_Amount_Submitted    34613
Loan_Tenure_Submitted    34613
Interest_Rate            59294
Processing_Fee           59600
EMI_Loan_Submitted       59294
Filled_Form                  0
Device_Type                  0
Var2                         0
Source                       0
Var4                         0
LoggedIn                     0
Disbursed                    0
dtype: int64

In [ ]: