In [2]:
import pandas as pd
# training_data[training_data.apply(lambda x: x['Credit_History'] == 0 and x['Loan_Status'] == 'Y',axis = 1)]

In [9]:
training_data = pd.read_csv('Data/train_u6lujuX_CVtuZ9i.csv')
testing_data = pd.read_csv('Data/test_Y3wMUE5_7gLdaTN.csv')

In [17]:
training_data


Out[17]:
Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area Loan_Status
0 LP001002 Male No 0 Graduate No 5849 0.0 NaN 360.0 1.0 Urban Y
1 LP001003 Male Yes 1 Graduate No 4583 1508.0 128.0 360.0 1.0 Rural N
2 LP001005 Male Yes 0 Graduate Yes 3000 0.0 66.0 360.0 1.0 Urban Y
3 LP001006 Male Yes 0 Not Graduate No 2583 2358.0 120.0 360.0 1.0 Urban Y
4 LP001008 Male No 0 Graduate No 6000 0.0 141.0 360.0 1.0 Urban Y
5 LP001011 Male Yes 2 Graduate Yes 5417 4196.0 267.0 360.0 1.0 Urban Y
6 LP001013 Male Yes 0 Not Graduate No 2333 1516.0 95.0 360.0 1.0 Urban Y
7 LP001014 Male Yes 3+ Graduate No 3036 2504.0 158.0 360.0 0.0 Semiurban N
8 LP001018 Male Yes 2 Graduate No 4006 1526.0 168.0 360.0 1.0 Urban Y
9 LP001020 Male Yes 1 Graduate No 12841 10968.0 349.0 360.0 1.0 Semiurban N
10 LP001024 Male Yes 2 Graduate No 3200 700.0 70.0 360.0 1.0 Urban Y
11 LP001027 Male Yes 2 Graduate NaN 2500 1840.0 109.0 360.0 1.0 Urban Y
12 LP001028 Male Yes 2 Graduate No 3073 8106.0 200.0 360.0 1.0 Urban Y
13 LP001029 Male No 0 Graduate No 1853 2840.0 114.0 360.0 1.0 Rural N
14 LP001030 Male Yes 2 Graduate No 1299 1086.0 17.0 120.0 1.0 Urban Y
15 LP001032 Male No 0 Graduate No 4950 0.0 125.0 360.0 1.0 Urban Y
16 LP001034 Male No 1 Not Graduate No 3596 0.0 100.0 240.0 NaN Urban Y
17 LP001036 Female No 0 Graduate No 3510 0.0 76.0 360.0 0.0 Urban N
18 LP001038 Male Yes 0 Not Graduate No 4887 0.0 133.0 360.0 1.0 Rural N
19 LP001041 Male Yes 0 Graduate NaN 2600 3500.0 115.0 NaN 1.0 Urban Y
20 LP001043 Male Yes 0 Not Graduate No 7660 0.0 104.0 360.0 0.0 Urban N
21 LP001046 Male Yes 1 Graduate No 5955 5625.0 315.0 360.0 1.0 Urban Y
22 LP001047 Male Yes 0 Not Graduate No 2600 1911.0 116.0 360.0 0.0 Semiurban N
23 LP001050 NaN Yes 2 Not Graduate No 3365 1917.0 112.0 360.0 0.0 Rural N
24 LP001052 Male Yes 1 Graduate NaN 3717 2925.0 151.0 360.0 NaN Semiurban N
25 LP001066 Male Yes 0 Graduate Yes 9560 0.0 191.0 360.0 1.0 Semiurban Y
26 LP001068 Male Yes 0 Graduate No 2799 2253.0 122.0 360.0 1.0 Semiurban Y
27 LP001073 Male Yes 2 Not Graduate No 4226 1040.0 110.0 360.0 1.0 Urban Y
28 LP001086 Male No 0 Not Graduate No 1442 0.0 35.0 360.0 1.0 Urban N
29 LP001087 Female No 2 Graduate NaN 3750 2083.0 120.0 360.0 1.0 Semiurban Y
... ... ... ... ... ... ... ... ... ... ... ... ... ...
584 LP002911 Male Yes 1 Graduate No 2787 1917.0 146.0 360.0 0.0 Rural N
585 LP002912 Male Yes 1 Graduate No 4283 3000.0 172.0 84.0 1.0 Rural N
586 LP002916 Male Yes 0 Graduate No 2297 1522.0 104.0 360.0 1.0 Urban Y
587 LP002917 Female No 0 Not Graduate No 2165 0.0 70.0 360.0 1.0 Semiurban Y
588 LP002925 NaN No 0 Graduate No 4750 0.0 94.0 360.0 1.0 Semiurban Y
589 LP002926 Male Yes 2 Graduate Yes 2726 0.0 106.0 360.0 0.0 Semiurban N
590 LP002928 Male Yes 0 Graduate No 3000 3416.0 56.0 180.0 1.0 Semiurban Y
591 LP002931 Male Yes 2 Graduate Yes 6000 0.0 205.0 240.0 1.0 Semiurban N
592 LP002933 NaN No 3+ Graduate Yes 9357 0.0 292.0 360.0 1.0 Semiurban Y
593 LP002936 Male Yes 0 Graduate No 3859 3300.0 142.0 180.0 1.0 Rural Y
594 LP002938 Male Yes 0 Graduate Yes 16120 0.0 260.0 360.0 1.0 Urban Y
595 LP002940 Male No 0 Not Graduate No 3833 0.0 110.0 360.0 1.0 Rural Y
596 LP002941 Male Yes 2 Not Graduate Yes 6383 1000.0 187.0 360.0 1.0 Rural N
597 LP002943 Male No NaN Graduate No 2987 0.0 88.0 360.0 0.0 Semiurban N
598 LP002945 Male Yes 0 Graduate Yes 9963 0.0 180.0 360.0 1.0 Rural Y
599 LP002948 Male Yes 2 Graduate No 5780 0.0 192.0 360.0 1.0 Urban Y
600 LP002949 Female No 3+ Graduate NaN 416 41667.0 350.0 180.0 NaN Urban N
601 LP002950 Male Yes 0 Not Graduate NaN 2894 2792.0 155.0 360.0 1.0 Rural Y
602 LP002953 Male Yes 3+ Graduate No 5703 0.0 128.0 360.0 1.0 Urban Y
603 LP002958 Male No 0 Graduate No 3676 4301.0 172.0 360.0 1.0 Rural Y
604 LP002959 Female Yes 1 Graduate No 12000 0.0 496.0 360.0 1.0 Semiurban Y
605 LP002960 Male Yes 0 Not Graduate No 2400 3800.0 NaN 180.0 1.0 Urban N
606 LP002961 Male Yes 1 Graduate No 3400 2500.0 173.0 360.0 1.0 Semiurban Y
607 LP002964 Male Yes 2 Not Graduate No 3987 1411.0 157.0 360.0 1.0 Rural Y
608 LP002974 Male Yes 0 Graduate No 3232 1950.0 108.0 360.0 1.0 Rural Y
609 LP002978 Female No 0 Graduate No 2900 0.0 71.0 360.0 1.0 Rural Y
610 LP002979 Male Yes 3+ Graduate No 4106 0.0 40.0 180.0 1.0 Rural Y
611 LP002983 Male Yes 1 Graduate No 8072 240.0 253.0 360.0 1.0 Urban Y
612 LP002984 Male Yes 2 Graduate No 7583 0.0 187.0 360.0 1.0 Urban Y
613 LP002990 Female No 0 Graduate Yes 4583 0.0 133.0 360.0 0.0 Semiurban N

614 rows × 13 columns


In [18]:
training_data.isnull().sum()


Out[18]:
Loan_ID               0
Gender               13
Married               3
Dependents           15
Education             0
Self_Employed        32
ApplicantIncome       0
CoapplicantIncome     0
LoanAmount           22
Loan_Amount_Term     14
Credit_History       50
Property_Area         0
Loan_Status           0
dtype: int64