In [1]:
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
In [2]:
m = nn.Conv2d(1, 6, 5)
In [3]:
m
Out[3]:
In [32]:
input = torch.autograd.Variable(torch.randn(1, 1, 32, 32))
In [34]:
output = m(input)
In [35]:
output.size()
Out[35]:
In [36]:
m1 = nn.Linear(20,30)
In [37]:
m1
Out[37]:
In [38]:
input1 = Variable(torch.randn(128,20))
In [40]:
output1 = m1(input1)
In [41]:
output1.size()
Out[41]:
In [49]:
x = Variable(torch.randn(2, 2, 2))
In [52]:
x.view
Out[52]:
In [50]:
x
Out[50]:
In [55]:
torch.arange(1, 11, 2)
Out[55]:
In [57]:
import torchvision
In [ ]: