In [1]:
import numpy as np
import pandas as pd
In [2]:
xgboost = pd.read_csv('XGBoost_w_Hyperparameters.csv')
randomforest = pd.read_csv('Random_Forest_w_Hyperparameters.csv')
genderclass = pd.read_csv('genderclassmodel.csv')
In [9]:
dfcomb = pd.merge(xgboost, randomforest, how='outer', on='PassengerId')
dfcomb = pd.merge(dfcomb, genderclass, how='outer', on='PassengerId')
In [10]:
dfcomb.head()
Out[10]:
In [41]:
dfcomb['SurvivedF'] = dfcomb.mode(axis=1)
In [42]:
dfcomb.head()
Out[42]:
In [43]:
dfcomb.drop(['Survived_x', 'Survived_y', 'Survived'], axis=1, inplace=True)
In [46]:
dfcomb.head()
Out[46]:
In [47]:
dfcomb.rename(columns = {'SurvivedF' : 'Survived'}, inplace=True)
In [48]:
dfcomb.head()
Out[48]:
In [50]:
dfcomb[['PassengerId','Survived']].to_csv('Ensemble_XG_RF_GenClass.csv',index=False)