In [1]:
import pandas as pd
In [2]:
df_train = pd.read_csv('../Datasets/Breast-Cancer/breast-cancer-train.csv')
df_test = pd.read_csv('../Datasets/Breast-Cancer/breast-cancer-test.csv')
In [3]:
df_test_negative = df_test.loc[df_test['Type'] == 0][['Clump Thickness', 'Cell Size']]
df_test_positive = df_test.loc[df_test['Type'] == 1][['Clump Thickness', 'Cell Size']]
In [4]:
import matplotlib.pyplot as plt
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'], marker = 'o', s=200, c='red')
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'], marker = 'x', s=150, c='black')
plt.xlabel('Clump Thickness')
plt.ylabel('Cell Size')
plt.show()
In [5]:
import numpy as np
intercept = np.random.random([1])
coef = np.random.random([2])
lx = np.arange(0, 12)
ly = (-intercept - lx * coef[0]) / coef[1]
plt.plot(lx, ly, c='yellow')
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'], marker = 'o', s=200, c='red')
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'], marker = 'x', s=150, c='black')
plt.xlabel('Clump Thickness')
plt.ylabel('Cell Size')
plt.show()
In [6]:
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(df_train[['Clump Thickness', 'Cell Size']][:10], df_train['Type'][:10])
print 'Testing accuracy (10 training samples):', lr.score(df_test[['Clump Thickness', 'Cell Size']], df_test['Type'])
In [7]:
intercept = lr.intercept_
coef = lr.coef_[0, :]
ly = (-intercept - lx * coef[0]) / coef[1]
plt.plot(lx, ly, c='green')
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'], marker = 'o', s=200, c='red')
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'], marker = 'x', s=150, c='black')
plt.xlabel('Clump Thickness')
plt.ylabel('Cell Size')
plt.show()
In [8]:
lr = LogisticRegression()
lr.fit(df_train[['Clump Thickness', 'Cell Size']], df_train['Type'])
print 'Testing accuracy (all training samples):', lr.score(df_test[['Clump Thickness', 'Cell Size']], df_test['Type'])
In [9]:
intercept = lr.intercept_
coef = lr.coef_[0, :]
ly = (-intercept - lx * coef[0]) / coef[1]
plt.plot(lx, ly, c='blue')
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'], marker = 'o', s=200, c='red')
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'], marker = 'x', s=150, c='black')
plt.xlabel('Clump Thickness')
plt.ylabel('Cell Size')
plt.show()
In [ ]: