model fitting - simplified convolutional neural network
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 1000) 0
_________________________________________________________________
embedding_1 (Embedding) (None, 1000, 100) 8324500
_________________________________________________________________
conv1d_1 (Conv1D) (None, 996, 128) 64128
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 199, 128) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 195, 128) 82048
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 39, 128) 0
_________________________________________________________________
conv1d_3 (Conv1D) (None, 35, 128) 82048
_________________________________________________________________
max_pooling1d_3 (MaxPooling1 (None, 1, 128) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 128) 16512
_________________________________________________________________
dense_2 (Dense) (None, 2) 258
=================================================================
Total params: 8,569,494
Trainable params: 8,569,494
Non-trainable params: 0
_________________________________________________________________
Train on 20000 samples, validate on 5000 samples
Epoch 1/10
20000/20000 [==============================] - 770s 38ms/step - loss: 0.7107 - acc: 0.5737 - val_loss: 0.7683 - val_acc: 0.5492
Epoch 2/10
20000/20000 [==============================] - 769s 38ms/step - loss: 0.4687 - acc: 0.7813 - val_loss: 0.3534 - val_acc: 0.8466
Epoch 3/10
18048/20000 [==========================>...] - ETA: 1:10 - loss: 0.3405 - acc: 0.8543
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<timed exec> in <module>()
/usr/local/lib/python3.5/dist-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
1655 initial_epoch=initial_epoch,
1656 steps_per_epoch=steps_per_epoch,
-> 1657 validation_steps=validation_steps)
1658
1659 def evaluate(self, x=None, y=None,
/usr/local/lib/python3.5/dist-packages/keras/engine/training.py in _fit_loop(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
1211 batch_logs['size'] = len(batch_ids)
1212 callbacks.on_batch_begin(batch_index, batch_logs)
-> 1213 outs = f(ins_batch)
1214 if not isinstance(outs, list):
1215 outs = [outs]
/usr/local/lib/python3.5/dist-packages/keras/backend/theano_backend.py in __call__(self, inputs)
1222 def __call__(self, inputs):
1223 assert isinstance(inputs, (list, tuple))
-> 1224 return self.function(*inputs)
1225
1226
/usr/local/lib/python3.5/dist-packages/theano/compile/function_module.py in __call__(self, *args, **kwargs)
901 try:
902 outputs =\
--> 903 self.fn() if output_subset is None else\
904 self.fn(output_subset=output_subset)
905 except Exception:
/usr/local/lib/python3.5/dist-packages/theano/gof/op.py in rval(p, i, o, n)
889 if params is graph.NoParams:
890 # default arguments are stored in the closure of `rval`
--> 891 def rval(p=p, i=node_input_storage, o=node_output_storage, n=node):
892 r = p(n, [x[0] for x in i], o)
893 for o in node.outputs:
KeyboardInterrupt: