In [19]:
import tensorflow as tf
import numpy as np
In [25]:
x_data = np.random.rand(100).astype(np.float32)
print(x_data)
In [27]:
y_data = x_data*0.1+0.3
print(y_data)
In [32]:
weights = tf.Variable(tf.random_uniform([1],-1.0,-1.0))
biases = tf.Variable(tf.zeros([1]))
y = weights * x_data + biases
print(y)
In [34]:
loss = tf.reduce_mean(tf.square(y-y_data))
In [35]:
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
In [36]:
init = tf.global_variables_initializer()
In [53]:
import matplotlib.pyplot as plt
%pylab inline
sess = tf.Session()
sess.run(init) # Very important
plt.scatter(0.1,0.3)
for step in range(201):
sess.run(train)
if step % 10 == 0:
x = plt.scatter(sess.run(weights),sess.run(biases))
print(step, sess.run(weights), sess.run(biases))
In [ ]: