In [1]:
:lisp (progn (ql:quickload :drakma)(ql:quickload :maxima-asdf))


To load "drakma":
  Load 1 ASDF system:
    drakma

; Loading "drakma"
...
To load "maxima-asdf":
  Load 1 ASDF system:
    maxima-asdf
Out[1]:
(:MAXIMA-ASDF)
; Loading "maxima-asdf"


In [2]:
install_github("YasuakiHonda","qepmax","master");


Out[2]:
\[\tag{${\it \%o}_{2}$}\left[ \mbox{ /home/honda/quicklisp/dists/quicklisp/archives/qepmax-precomp-qepcad.gz } , \mbox{ /home/honda/quicklisp/local-projects/YasuakiHonda-qepmax-30d51ba/ } \right] \]

In [3]:
asdf_load_source("qepmax");


REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::$NONNEGINTEGERP in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::$POLYNOMIALP in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::POLYNOMIALP in DEFUN

REDEFINITION-WITH-DEFMACRO: 
  redefining MAXIMA::OPAPPLY in DEFMACRO

REDEFINITION-WITH-DEFMACRO: 
  redefining MAXIMA::OPCONS in DEFMACRO

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::MY-TAKE in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::$OPSUBST in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::VERBIFY-STRING in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::SAFE-VERBIFY in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::OP-SUBST in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::$OPSUBSTIF in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::OP-SUBST-IF in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::$GATHERARGS in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::GATHERARGS in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::$GATHEROPS in DEFUN

REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::GATHEROPS in DEFUN
Out[3]:
\[\tag{${\it \%o}_{3}$}\#\]
REDEFINITION-WITH-DEFUN: 
  redefining MAXIMA::MSZ-MTIMES in DEFUN

In [4]:
x+3*y=1;


Out[4]:
\[\tag{${\it \%o}_{4}$}3\,y+x=1\]

In [5]:
qepcad_installed_dir;


Out[5]:
\[\tag{${\it \%o}_{5}$}\mbox{ /home/honda/quicklisp/local-projects/YasuakiHonda-qepmax-30d51ba/qepcad-linux }\]

In [6]:
qe([[A,x],[E,y]],x+c*y=1);


Out[6]:
\[\tag{${\it \%o}_{6}$}c\neq 0\]

In [7]:
qe([[X2,x]],a*x^2+b*x+c=0);


Out[7]:
\[\tag{${\it \%o}_{7}$}\left(a\neq 0\right) \land \left(4\,a\,c-b^2<0\right)\]

In [8]:
qe([[X1,x]],a*x^2+b*x+c=0);


Out[8]:
\[\tag{${\it \%o}_{8}$}\left(a=0\right) \land \left(4\,a\,c-b^2<0\right) \lor \left(\left(a>0\right) \land \left(4\,a\,c-b^2=0\right)\right) \lor \left(\left(a<0\right) \land \left(4\,a\,c-b^2=0\right)\right)\]

In [9]:
qe([[E,x],[E,y]], (x^2+y^2=1) %and (y=a*x+b) );


Out[9]:
\[\tag{${\it \%o}_{9}$}-b^2+a^2+1\geq 0\]

In [10]:
solve([x^2+y^2=1,y=3*x+2],[x,y]);


Out[10]:
\[\tag{${\it \%o}_{10}$}\left[ \left[ x=-\frac{\sqrt{6}+6}{10} , y=-\frac{3\,\sqrt{6}-2}{10} \right] , \left[ x=\frac{\sqrt{6}-6}{10} , y=\frac{3\,\sqrt{6}+2}{10} \right] \right] \]

In [11]:
qe([[X1,x],[X1,y]], (x^2+y^2=1) %and (y=a*x+b) );


Out[11]:
\[\tag{${\it \%o}_{11}$}-b^2+a^2+1=0\]

In [12]:
solve(ev(%,a=2),b);


Out[12]:
\[\tag{${\it \%o}_{12}$}\left[ b=-\sqrt{5} , b=\sqrt{5} \right] \]

In [13]:
load(draw);


Out[13]:
\[\tag{${\it \%o}_{13}$}\mbox{ /home/honda/root/share/maxima/5.43.2/share/draw/draw.lisp }\]

In [14]:
draw2d(implicit(x^2+y^2=1,x,-2,2,y,-2,2),explicit(2*x+sqrt(5),x,-2,2));


Out[14]:
\[\tag{${\it \%o}_{14}$}\left[ {\it gr2d}\left({\it implicit} , {\it explicit}\right) \right] \]

In [ ]: