In [97]:
%matplotlib inline
from pycocotools.coco import COCO
import numpy as np
import skimage.io as io
import matplotlib.pyplot as plt
import pickle
import scipy.spatial as ss
In [16]:
# training set
dataType='train2014'
usingSet='10000coco'
# validation set
# dataType='val2014'
# usingSet='5kcoco'
#===================
dataDir='/media/haoran/DATA/Dataset/COCO/tools'
usingSetDir = '/media/haoran/Data/Dataset/VIPcoco/%s'%usingSet
InsFile='%s/annotations/instances_%s.json'%(dataDir,dataType)
CapFile='%s/annotations/captions_%s.json'%(dataDir,dataType)
Ins_coco=COCO(InsFile)
Cap_coco=COCO(CapFile)
In [17]:
SALICON = pickle.load(open('data/10000coco.p','rb'))
print SALICON['SALICON_id'][0]
print SALICON['SALICON_filename'][0]
In [18]:
im_id_toshow = 0
I = io.imread('%s/images/%s/%s'%(dataDir,dataType,SALICON['SALICON_filename'][im_id_toshow]))
plt.imshow(I)
Out[18]:
In [19]:
im_id_toshow = 2
blankim = np.zeros((460,680,3),np.uint8)
plt.imshow(blankim)
annIds = Ins_coco.getAnnIds(SALICON['SALICON_id'][im_id_toshow])
anns = Ins_coco.loadAnns(annIds)
Ins_coco.showAnns(anns)
# plt.show()
In [11]:
Ins_coco.getAnnIds(134)
Out[11]:
In [27]:
annIds = Ins_coco.getAnnIds(SALICON['SALICON_id'][1])
anns =Ins_coco.loadAnns(annIds)
In [29]:
len(anns)
Out[29]:
In [32]:
anns[1]
Out[32]:
In [38]:
round(3/float(120),2)
Out[38]:
In [42]:
a.append([2,3])
In [63]:
a = [[1 ,2],[2 ,3],[3,4],[4,5]]
c = [[1,2]]
In [68]:
b = ss.distance.cdist(c,a)
In [72]:
b.mean()
Out[72]:
In [73]:
d = {}
d[0] = 1
In [80]:
for i,[j,k] in enumerate(zip(a,a)):
print i,j,k
In [92]:
ss ={}
ss[1][1]= 1
ss
In [94]:
kk = 1
kk is not 2
Out[94]:
In [98]:
a = [1,2]
b = [2,3]
c = ss.distance.pdist([a,b])
In [106]:
c[0]
Out[106]:
In [ ]: