In [1]:
from pyspark import SparkContext, SparkConf, SQLContext, HiveContext, StorageLevel
from pyspark.sql.functions import *
from pyspark.mllib.feature import HashingTF
In [2]:
sc = SparkContext()
sqlContext = SQLContext(sc)
In [3]:
#Importing other Libraries
from pyspark.mllib.linalg import Matrices, DenseMatrix,SparseMatrix
from np_extractor import *
import nltk
import nltk.corpus
#from rake import *
import json
import os
import pandas as pd
In [4]:
def get_rdd(base, input, num_part):
base_dir = os.path.join(base)
input_path = os.path.join(input)
file_name = os.path.join(base_dir, input_path)
# load data
rdd = sc.textFile(file_name, num_part)
rdd_j = rdd.map(json.loads)
rdd_j.cache()
return rdd_j
In [5]:
def load_stopwords():
text_file = open("../data/MergedStopList.txt", "r")
lines = text_file.readlines()
stopwords = [""]
for line in lines:
if "#" not in line: #Throwing out the comments
stopwords.append(line.strip())
nltk_stopwords = nltk.corpus.stopwords.words('english')
stopwords.extend(nltk_stopwords)
return set(stopwords)
stopwords = load_stopwords()
In [6]:
def cleanReview(text):
#Input a single reivew
text = text.split(" ")
clean_text = []
for word in text:
word = word.lower()
words = nltk.word_tokenize(word)
for word in words:
if word not in stopwords:
if word.isalnum():
clean_text.append(word)
return clean_text
In [7]:
def cleanReviews(reviewList):
#Input list of reviews
clean_reviews = []
for review in reviewList:
clean_reviews.extend(cleanReview(review))
return " ".join(clean_reviews)
In [37]:
#Read Data file in sparkSQL
#reviews = sqlContext.read.json("../data/reviews_electronics5000.json")
#reviews.persist(storageLevel=StorageLevel.MEMORY_AND_DISK_SER)
revDB = sqlContext.read.json("../data/reviews_electronics.json")
metadataDB = sqlContext.read.json("../data/meta_electronics.json")
metadataDB.persist(storageLevel=StorageLevel.MEMORY_AND_DISK_SER)
#
# fullData = revDB.join(metadataDB)
# fullData.printSchema()
Out[37]:
In [44]:
import pickle
f = open('listOfSubcats','r')
listOfSubCats = pickle.load(f)
f.close()
In [ ]:
for category in listOfSubCats:
selected_asin_category = metadataDB.map(lambda x: (x.asin, x.categories[0])).flatMap(lambda (asin, cats): [(asin, cat) for cat in cats]).filter(lambda (asin,cat): category in cat).map(lambda (asin,cats): (asin)).distinct()
category_reviews = selected_asin_category.map(lambda asin: (asin,0)).join(revDB.map(lambda x: (x.asin,x.reviewText))).map(lambda joined: joined[1][1]).collect()
outfile = open(category+'1612','w')
print >> outfile, "\n".join(str(i) for i in category_reviews)
outfile.close()
In [ ]:
#Reading RDD and getting the data
num_part = 16
revs = get_rdd('../data', 'reviews_electronics5000.json', num_part)
rev_texts = revs.map(lambda x: (x['asin'], x['reviewText']))
just_revs = revs.map(lambda x: (x['reviewText']))
just_revs = just_revs.collect()
In [ ]:
#For Generating Vocabulary
#Word count & Vocabulary Building
combined_revs = rev_texts.map(lambda (asin,text): text)
counts = combined_revs.flatMap(lambda line: line.split(" "))
counts = counts.flatMap(lambda word: nltk.word_tokenize(word))
counts = counts.map(lambda word: (word.lower(), 1)).reduceByKey(lambda a, b: a + b)
counts = counts.filter(lambda x: len(x[0]) > 2)
counts = counts.filter(lambda x: x[0].isalnum())
filteredCounts = counts.filter(lambda x: x[0] not in stopwords)
#filteredCounts.sortBy(lambda (word, count): count)
#countsDF = filteredCounts.toDF()
vocabulary = filteredCounts.map(lambda x : x[0]).collect() #Vocab length of 13121
In [ ]:
filteredCounts.toDF().sort(desc("_2")).show(50)
In [ ]:
#For creating BoW model
rev_agg_by_asin = rev_texts.map(lambda (asin, text): (asin, [text])).reduceByKey(lambda x, y: x + y)
clean_agg_revs = rev_agg_by_asin.map(lambda x: (x[0],cleanReviews(x[1])))
clean_agg_revs.cache()
#stopwords = sc.broadcast(stopwords)
In [ ]:
#Initializing
hashingTF = HashingTF()
from collections import defaultdict
hashMap1 = {}
hashMap2 = {}
for word in vocabulary:
hashMap1[hashingTF.indexOf(word)] = word
sparseVec = hashingTF.transform([word])
hashMap2[sparseVec.indices[0]] = word
featurized_reviews = clean_agg_revs.map(lambda x: (x[0], hashingTF.transform(x[1])))
featurized_vocab = hashingTF.transform(vocabulary)
In [ ]:
#LDA Part
from pyspark.mllib.clustering import LDA, LDAModel
from pyspark.mllib.linalg import Vectors,DenseVector,SparseVector
numTopics = 5
corpus = featurized_reviews.zipWithIndex().map(lambda x: [x[1], x[0][1]]).cache()
ldaModel = LDA.train(corpus, numTopics)
In [ ]:
vocabSize = ldaModel.vocabSize()
topics = ldaModel.topicsMatrix()
print ("Topics shape ", topics.shape)
In [ ]:
# tempMatrix = DenseMatrix(vocabSize,numTopics,tranTopics.flatten())
# sparseMatrix = tempMatrix.toSparse()
# print (sparseMatrix)
print hashMap1[237727]
print hashMap2[237727]
In [ ]:
#test = niceSparse(sparseMatrix)
for topic_index in range(topics.shape[1]):
print("Words in topic %d are \n",topic_index)
for word_index in range(topics.shape[0]):
if topics[word_index][topic_index] != 0:
print word_index in hashMap2.keys()
In [ ]:
#SparseMatrix to co-ordinate tuples
def niceSparse(self):
niceSparseMat = []
cur_col = 0
smlist = []
zipindval = zip(self.rowIndices, self.values)
for i, (rowInd, value) in enumerate(zipindval):
if self.colPtrs[cur_col + 1] <= i:
cur_col += 1
if self.isTransposed:
niceSparseMat.append((cur_col,rowInd,value))
else:
niceSparseMat.append((rowInd,cur_col,value))
return niceSparseMat
In [ ]:
#POS Tagging these items
# posTaggedWords = filteredCounts.map(lambda (word,count): (word,nltk.pos_tag(word)[0][1],count))
#posTaggedWords = posTaggedWords.cache()
#posTaggedWords.persist(storageLevel=StorageLevel.MEMORY_AND_DISK_SER)
# df = pd.DataFrame(posTaggedWords.collect())
# df.to_csv('../data/processed/posTaggedWords_final.csv')
In [ ]:
#Syntax for NLTK
#tokens = nltk.word_tokenize(text)
#tagged = nltk.pos_tag(tokens)
#from nltk.corpus import stopwords
#stopwords.words('english')
#nltk_stopwords = stopwords.words('english')
#other_stopwords =
#from nltk.corpus import wordnet as wn
# words = data.flatMap(lambda x: nltk.word_tokenize(x))
# print words.take(10)
# pos_word = words.map(lambda x: nltk.pos_tag([x]))
# print pos_word.take(5)
a = featurized_reviews.collect()[1]
print len(a[1].toArray())
In [ ]:
import numpy as np
import lda
import lda.datasets
X = lda.datasets.load_reuters()
vocab = lda.datasets.load_reuters_vocab()
titles = lda.datasets.load_reuters_titles()
print(X.shape)
len(vocab)
In [ ]:
#X.sum()
model = lda.LDA(n_topics=20, n_iter=1500, random_state=1)
model.fit(X) # model.fit_transform(X) is also available
topic_word = model.topic_word_ # model.components_ also works
n_top_words = 8
for i, topic_dist in enumerate(topic_word):
topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n_top_words+1):-1]
print('Topic {}: {}'.format(i, ' '.join(topic_words)))
In [25]:
# 3. output
# import pandas as pd
# df = pd.DataFrame(items_np.collect())
# df.to_csv('data/processed/computers_kw.csv')
reviews = sc.textFile('Digital SLR Cameras1612_200.txt,NAS_200.txt')
just_clean_reviews = reviews.map(lambda x: cleanReviews([x])).collect()
# just_clean_reviews = clean_agg_revs.map(lambda x: x[1]).collect()
In [26]:
from nltk.tokenize import RegexpTokenizer
from stop_words import get_stop_words
from nltk.stem.porter import PorterStemmer
from gensim import corpora, models
import gensim
tokenizer = RegexpTokenizer(r'\w+')
# create English stop words list
en_stop = get_stop_words('en')
# Create p_stemmer of class PorterStemmer
p_stemmer = PorterStemmer()
# list for tokenized documents in loop
texts = []
# loop through document list
for i in just_clean_reviews:
# clean and tokenize document string
raw = i.lower()
tokens = tokenizer.tokenize(raw)
# remove stop words from tokens
#stopped_tokens = [i for i in tokens if not i in stopwords]
stopped_tokens = [i for i in tokens]
# stem tokens
#stemmed_tokens = [p_stemmer.stem(i) for i in stopped_tokens]
stemmed_tokens = [i for i in stopped_tokens]
# add tokens to list
texts.append(stemmed_tokens)
# turn our tokenized documents into a id <-> term dictionary
dictionary = corpora.Dictionary(texts)
# convert tokenized documents into a document-term matrix
corpus = [dictionary.doc2bow(text) for text in texts]
In [ ]:
# print clean_agg_revs.take(3)
In [27]:
# generate LDA model
ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=2, id2word = dictionary, passes=20)
In [31]:
ldamodel.print_topics(num_topics=2, num_words=25)
Out[31]:
In [ ]: