In [205]:
from gensim import corpora, models, similarities
import pickle
import string
import pandas as pd
import numpy as np
import re
from collections import defaultdict
from tqdm import tqdm_pandas, tqdm, trange
In [206]:
import sys
sys.setrecursionlimit(100000)
In [207]:
def remove_punctuation(x):
x = str(x)
replace_punctuation = string.maketrans(string.punctuation, ' '*len(string.punctuation))
return unicode(x.translate(replace_punctuation),errors='ignore')
In [208]:
beers = pd.read_pickle('all_beer_reviews.pkl')
In [209]:
# remove beers with no reviews
# potentially remove beers with fewer reviews because of small sample size
beers = beers[beers.num_reviews > 0]
In [210]:
#beers = beers[beers.num_reviews >= 10]
beers.reset_index(inplace=True)
In [211]:
beers.shape
Out[211]:
(20424, 20)
In [212]:
# find number of reviews
def get_num_reviews(reviews):
return len(reviews)
sum(beers.reviews.map(get_num_reviews))
Out[212]:
699693
In [213]:
documents = [review for review in beers.reviews]
In [214]:
documents = [' '.join(review) for review in documents]
In [215]:
documents = [remove_punctuation(doc) for doc in documents]
In [216]:
documents = [review.lower() for review in documents]
In [217]:
documents = [re.sub(r'[0-9]','',doc) for doc in documents]
In [218]:
# test stoplist
# test_stopwords = set('porter stout ipas dipas dipa hefe'.split())
# stoplist = stoplist.union(test_stopwords)
In [219]:
# add weird words
stoplist = set('snpa pkgd'.split())
In [220]:
# add brewery names to stoplist
brewery_words = []
for brewery in beers.brewery_name:
for word in remove_punctuation(brewery.encode('utf-8')).lower().split():
brewery_words.append(word)
brewery_words = set(brewery_words)
stoplist = stoplist.union(brewery_words)
In [221]:
# add beer names to stoplist
# names that appear in the list of beer names infrequently
beer_name_words = []
for beer in beers.name:
for word in remove_punctuation(beer.encode('utf-8')).lower().split():
beer_name_words.append(word)
beer_name_frequency = defaultdict(int)
for word in beer_name_words:
beer_name_frequency[word] += 1
sorted(beer_name_frequency.items(), key = lambda x: -x[1])
beer_name_words = [word for word in beer_name_words if beer_name_frequency[word] < 10]
beer_name_words = set(beer_name_words)
stoplist = stoplist.union(beer_name_words)
In [222]:
texts = [[word for word in document.lower().split() if word not in stoplist and len(word) > 3]for document in documents]
In [223]:
texts = [' '.join(text) for text in texts]
In [224]:
texts[152]
Out[224]:
u'held with with lots melted decent amount honey more starting earthy with mossy mushroom melts tart graphite tang brings more notes finishes fruity reminiscent grigio with honey different expected more think this could killer restrained more poured with billowy with everlasting belgian with typical tropical fruit aromas with spice smooth sticky touches malty sweetness along with notes spices tropical fruits carbonation biting complements rather sweet ddespuma trappe chalice detective drier maybe this makes more spiced alcohol noticeable think prefer this isnt either fruit belgian hint alcohol berries sweetness belgian tart warming alcohol melle gold with snowy carpet more floral honey spice sweet tang slight banana hint tart smooth aimed girly unfortunately smooth easy spiced enough balance theres this coconut butter thats probably diacetyl arresting innocuous nowhere near worth kind booze pours gold with lacingsmells fruity belgian fruity banana apples pepper cloves slight floral sweetness aftertaste carbonation refreshing different enough seem necessary nonetheless nicely carbonated linger with sweet fruitiness this drinkable alcohol undectable poured corked belgian goblet appearance pours with moderate amount settles thin layer fruity driven with scent belgian style fruit esters spices belgian with scent spice hints clove coriander fruit hints lemon banana apple sweet scent belgian candied hints hints floral belgian fruity driven belgian with notes fruit spices belgian with clove pepper coriander fruit notes lemon banana apple notes sweet candied subtle notes floral mouthfeel bodied with carbonation drying somewhat acidic alcohol masked belgian fruit esters spices with smooth drying poured chalice glassappearance pours with fizzy fades rather fast slowing subdues then retention fades further foamy spotty with foamy surface quite yeasty fruity peach tons bubblegum this with probably actually strongest this complimented nicely coriander clove aromas balancing rather with mixed with with deliciously sweet robust begins drier then anticipating with rather crackery mixed with these flavors rather decently strong spice flavors coriander clove with both spice ramping advances candied upfront which fades more with replaced fruits detected while boozy flavors begin developing with starting more subdued getting decently strong with develop with rather boozy rather flavorful linger mouthfeel thin strong with carbonation average composed peppery although carbonation would more invigorating rather though complimented flavors nicely this rather refreshing strong enjoyable disappoints version poured slowly sidewalls corked gold with fizzy carbonation transparent typical belgian sweeter fruit slight spiceyness tastes wine apple juice peppery doesn seem prominent with blonde belgian more noticeable with aftertaste lingering flavors aftertaste more quencher dehydrator though which surprising easy favorite anyrhing summer this significant appeal chardonay chamagne poured somewhat gingerly snifter gold lots effervescence sprinting thick sudsy maybe mention deafening occurred when removed fizz erupting elephant batman delicate combination spice sweetness grainy bready citrus lemon booze hiding refreshing imitates however sweetness would dryness levels dryness makes more more spice spices used both guessed active carbonation fizzy refreshing aspect finishes super maybe those your satisfying pleasant reviewer mention shows theyre capable though typically thought male default unisex brouwerijj compliments bottled pours fairly with fairly dense fluffy with retention reduces lingers spotty soapy lacing clings with amount streaming carbonation retaining aromas lemon lime apricot apple pepper earthiness damn aromas with balance complexity fruity earthy notes with lemon lime apricot apple pepper earthiness amount peppery spiciness bitterness with lingering notes lemon lime apricot apple pepper earthiness damn complexity balance fruity moderate flavors with balance cloying flavors carbonation bodied with smooth bready mouthfeel amount dryness alcohol with minimal warming present this excellent belgian strong complexity balance fruity moderate flavors smooth enjoyable with revamped drier spicier latest with fruity interwoven streams carbonation easily mistaken cottony froth with spice wine with lightest backdrop wafter thin sweetness floral upstart session simply blossoms effervescence engulfs with apple lemon tangy berries acts dissolves slender sweetness with ease ushers pepper clove freshly grated pepper seed coriander tart vinous acidity despite strong alcohol dryness resonate with balance fresh peppery aftertaste continues dryly fruit excellent this refreshing blond enjoyed highly recommend pairing with suitable instance corked marked sampled decent sized sits until pleasing with belgian belgian clean this style quite refreshing carbonation senses once belgian toasted sweetness poured corked goblet moderate reads dated presumably with exceptional clarity initial coarse sudsy retention scant lacing fruity belgian with flashes fruit yeasty spice yielding gradual finishes quite with lingering bitterness aftertaste clean alcohol presence carbonation with linger effervescence initially acquires texture settles fruit notes while this certainly distinct recollection snifter pours with fluffy active slowly fizzed thick film bready mild spiciness perfumey fruits earthy leafy hints fruits peach apricot biscuity earthy fruity slight mineraliness with addition vinous mint crips bready crackery doughy earthy leafy with bitterness wine fruits aftertaste lingering peppery spice slight fizzy active carbonation luckily drinkability texture reminds clean sweet mouthfeel while since this enjoyable belgian easy with wine appearance pours mildly aggressively with typical style with acceptable retention lacing pleasantly fruitiness citrus apple apricot exist seem quite delicate given picking hint akin while makes ridiculously delicate initial combination citrus candied makes think fruit with maltiness subdued favor esters complain more alcohol through actually once opens properly alcohol profile goes entirely leaving delicate citrus mouthfeel combination slender conspire mild booziness typical style quite fizzy chugging this weren feeling bloated prefer alcohol this effort bspas makes seem more delicate told this damn bspa sarcasm with belgian picked follow lemon belgian floral bitterness create belgian refreshing easy consume this poured goblet with appearance thin disappears lacing crackers booze pepper notes crackers sweet citrus notes lemon booze effervescent booze lingers drinkable though booze through this with swedish meatballs potatoes lingon held compliment this style moderate sweet newest female team information style belgian strong available bottles poured served fahrenheit appearance pours clarity carbonation plentiful vivacious retention excellent lacing moderately thick patchy with belgian strain characteristics with notes peppery spice floral cider fruit lemon notes subtle with equally bitterness potency moderate clean sweet with matching bitterness profile lends notes lemon rind mild mouthfeel texture clean moderately acidic carbonation mouthfeel style balance acidic sweet alcohol presence perceivable characters clean mouthfeel lady commend skilled together this clean collectively difficult assemble floral characteristics mild mannered volumes recommended sdeliria'
In [225]:
import textblob
from spacy.en import English
import string
from nltk.corpus import stopwords
parser = English()
#STOPWORDS = ''.split()
#SYMBOLS = " ".join(string.punctuation).split(" ") + ["-----", "---", "...", "“", "”", "'ve", '..']
STOPLIST = set(stopwords.words('english'))
In [226]:
texts[152]
Out[226]:
u'held with with lots melted decent amount honey more starting earthy with mossy mushroom melts tart graphite tang brings more notes finishes fruity reminiscent grigio with honey different expected more think this could killer restrained more poured with billowy with everlasting belgian with typical tropical fruit aromas with spice smooth sticky touches malty sweetness along with notes spices tropical fruits carbonation biting complements rather sweet ddespuma trappe chalice detective drier maybe this makes more spiced alcohol noticeable think prefer this isnt either fruit belgian hint alcohol berries sweetness belgian tart warming alcohol melle gold with snowy carpet more floral honey spice sweet tang slight banana hint tart smooth aimed girly unfortunately smooth easy spiced enough balance theres this coconut butter thats probably diacetyl arresting innocuous nowhere near worth kind booze pours gold with lacingsmells fruity belgian fruity banana apples pepper cloves slight floral sweetness aftertaste carbonation refreshing different enough seem necessary nonetheless nicely carbonated linger with sweet fruitiness this drinkable alcohol undectable poured corked belgian goblet appearance pours with moderate amount settles thin layer fruity driven with scent belgian style fruit esters spices belgian with scent spice hints clove coriander fruit hints lemon banana apple sweet scent belgian candied hints hints floral belgian fruity driven belgian with notes fruit spices belgian with clove pepper coriander fruit notes lemon banana apple notes sweet candied subtle notes floral mouthfeel bodied with carbonation drying somewhat acidic alcohol masked belgian fruit esters spices with smooth drying poured chalice glassappearance pours with fizzy fades rather fast slowing subdues then retention fades further foamy spotty with foamy surface quite yeasty fruity peach tons bubblegum this with probably actually strongest this complimented nicely coriander clove aromas balancing rather with mixed with with deliciously sweet robust begins drier then anticipating with rather crackery mixed with these flavors rather decently strong spice flavors coriander clove with both spice ramping advances candied upfront which fades more with replaced fruits detected while boozy flavors begin developing with starting more subdued getting decently strong with develop with rather boozy rather flavorful linger mouthfeel thin strong with carbonation average composed peppery although carbonation would more invigorating rather though complimented flavors nicely this rather refreshing strong enjoyable disappoints version poured slowly sidewalls corked gold with fizzy carbonation transparent typical belgian sweeter fruit slight spiceyness tastes wine apple juice peppery doesn seem prominent with blonde belgian more noticeable with aftertaste lingering flavors aftertaste more quencher dehydrator though which surprising easy favorite anyrhing summer this significant appeal chardonay chamagne poured somewhat gingerly snifter gold lots effervescence sprinting thick sudsy maybe mention deafening occurred when removed fizz erupting elephant batman delicate combination spice sweetness grainy bready citrus lemon booze hiding refreshing imitates however sweetness would dryness levels dryness makes more more spice spices used both guessed active carbonation fizzy refreshing aspect finishes super maybe those your satisfying pleasant reviewer mention shows theyre capable though typically thought male default unisex brouwerijj compliments bottled pours fairly with fairly dense fluffy with retention reduces lingers spotty soapy lacing clings with amount streaming carbonation retaining aromas lemon lime apricot apple pepper earthiness damn aromas with balance complexity fruity earthy notes with lemon lime apricot apple pepper earthiness amount peppery spiciness bitterness with lingering notes lemon lime apricot apple pepper earthiness damn complexity balance fruity moderate flavors with balance cloying flavors carbonation bodied with smooth bready mouthfeel amount dryness alcohol with minimal warming present this excellent belgian strong complexity balance fruity moderate flavors smooth enjoyable with revamped drier spicier latest with fruity interwoven streams carbonation easily mistaken cottony froth with spice wine with lightest backdrop wafter thin sweetness floral upstart session simply blossoms effervescence engulfs with apple lemon tangy berries acts dissolves slender sweetness with ease ushers pepper clove freshly grated pepper seed coriander tart vinous acidity despite strong alcohol dryness resonate with balance fresh peppery aftertaste continues dryly fruit excellent this refreshing blond enjoyed highly recommend pairing with suitable instance corked marked sampled decent sized sits until pleasing with belgian belgian clean this style quite refreshing carbonation senses once belgian toasted sweetness poured corked goblet moderate reads dated presumably with exceptional clarity initial coarse sudsy retention scant lacing fruity belgian with flashes fruit yeasty spice yielding gradual finishes quite with lingering bitterness aftertaste clean alcohol presence carbonation with linger effervescence initially acquires texture settles fruit notes while this certainly distinct recollection snifter pours with fluffy active slowly fizzed thick film bready mild spiciness perfumey fruits earthy leafy hints fruits peach apricot biscuity earthy fruity slight mineraliness with addition vinous mint crips bready crackery doughy earthy leafy with bitterness wine fruits aftertaste lingering peppery spice slight fizzy active carbonation luckily drinkability texture reminds clean sweet mouthfeel while since this enjoyable belgian easy with wine appearance pours mildly aggressively with typical style with acceptable retention lacing pleasantly fruitiness citrus apple apricot exist seem quite delicate given picking hint akin while makes ridiculously delicate initial combination citrus candied makes think fruit with maltiness subdued favor esters complain more alcohol through actually once opens properly alcohol profile goes entirely leaving delicate citrus mouthfeel combination slender conspire mild booziness typical style quite fizzy chugging this weren feeling bloated prefer alcohol this effort bspas makes seem more delicate told this damn bspa sarcasm with belgian picked follow lemon belgian floral bitterness create belgian refreshing easy consume this poured goblet with appearance thin disappears lacing crackers booze pepper notes crackers sweet citrus notes lemon booze effervescent booze lingers drinkable though booze through this with swedish meatballs potatoes lingon held compliment this style moderate sweet newest female team information style belgian strong available bottles poured served fahrenheit appearance pours clarity carbonation plentiful vivacious retention excellent lacing moderately thick patchy with belgian strain characteristics with notes peppery spice floral cider fruit lemon notes subtle with equally bitterness potency moderate clean sweet with matching bitterness profile lends notes lemon rind mild mouthfeel texture clean moderately acidic carbonation mouthfeel style balance acidic sweet alcohol presence perceivable characters clean mouthfeel lady commend skilled together this clean collectively difficult assemble floral characteristics mild mannered volumes recommended sdeliria'
In [227]:
def tokenizeText(sample):
# get the tokens using spaCy
tokens = parser(sample)
# lemmatize
lemmas = []
for tok in tokens:
lemmas.append(tok.lemma_.lower().strip() if tok.lemma_ != "-PRON-" else tok.lower_)
tokens = lemmas
# stoplist the tokens
tokens = [tok for tok in tokens if tok not in STOPLIST]
# stoplist symbols
tokens = [tok for tok in tokens if tok not in SYMBOLS]
# remove large strings of whitespace
while "" in tokens:
tokens.remove("")
while " " in tokens:
tokens.remove(" ")
while "\n" in tokens:
tokens.remove("\n")
while "\n\n" in tokens:
tokens.remove("\n\n")
return tokens
#texts = [tokenizeText(unicode(document, errors = 'ignore')) for document in documents]a
for i in trange(len(texts)):
texts[i] = tokenizeText(texts[i])
0%| | 0/20424 [00:00<?, ?it/s]/usr/local/lib/python2.7/site-packages/ipykernel/__main__.py:15: UnicodeWarning: Unicode equal comparison failed to convert both arguments to Unicode - interpreting them as being unequal
100%|██████████| 20424/20424 [32:39<00:00, 10.98it/s]
In [228]:
frequency = defaultdict(int)
for text in texts:
for token in text:
frequency[token] += 1
texts = [[token for token in text if frequency[token] > 25]for text in texts]
In [229]:
dictionary = corpora.Dictionary(texts)
In [230]:
corpus = [dictionary.doc2bow(text) for text in texts]
In [231]:
tfidf = models.TfidfModel(corpus)
In [232]:
corpus_tfidf = tfidf[corpus]
In [233]:
lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=500)
In [234]:
index = similarities.MatrixSimilarity(lsi[corpus])
In [276]:
text_input = 'Franconia Amber'
In [251]:
def get_beer_keywords(text_input):
input_beer_keywords = []
for item in sorted(corpus_tfidf[beers[beers.name == text_input].index[0]], key = lambda x: -x[1])[:5]:
input_beer_keywords.append(dictionary[item[0]])
return input_beer_keywords
beers['keywords'] = beers.name.map(get_beer_keywords)
get_beer_keywords(text_input)
Out[251]:
[u'dipa', u'grapefruit', u'hype', u'citrus', u'resinous']
In [267]:
def get_similar_beers(text_input):
try:
doc = documents[beers[beers.name == text_input].index[0]]
beer_name_inputted = 1
except IndexError:
doc = text_input
beer_name_inputted = 0
vec_bow = dictionary.doc2bow(doc.lower().split())
vec_lsi = lsi[vec_bow]
sims = index[vec_lsi]
similar_beers = []
for beer in sorted(enumerate(sims), key = lambda x: -x[1])[beer_name_inputted:beer_name_inputted+5]:
similar_beers.append((beer[0],beer[1]))
return similar_beers
beers['similar_beers'] = beers.name.map(get_similar_beers)
get_similar_beers(text_input)
Out[267]:
[(9383, 0.67443031),
(3847, 0.66239333),
(17265, 0.65351772),
(19644, 0.64691734),
(2230, 0.64626372)]
In [269]:
similar_beers = beers.similar_beers.iloc[0]
In [287]:
def get_recs_from_input(text_input):
beer_name_inputted = True
similar_beer_ids = list(beers[beers.name == text_input].similar_beers)
similar_beers = [beer[0] for beer in similar_beer_ids[0]]
similar_beers = beers.iloc[similar_beers]
return (similar_beers ,beer_name_inputted)
get_recs_from_input(text_input)[0]
Out[287]:
index
abv
availability
ba_score
beer_style
brewery_loation
brewery_name
brewery_website
for_trade
gots
...
num_reviews
pdev
ravg
reviews
soup
style_url
url
wants
keywords
similar_beers
9383
18330
5.5
Rotating
81
American Amber / Red Ale
Arizona
SanTan Brewing Co.
http://www.santanbrewing.com
0
16
...
35
21.65
3.51
[ Poured a clear amber body with a thin ring o...
NaN
/beer/style/128/
/beer/profile/16357/58721/
2
[amber, chandler, layover, airport, order]
[(3847, 0.705795), (5599, 0.695927), (18762, 0...
3847
13449
4.5
Year-round
79
American Amber / Red Lager
Texas
Rahr & Sons Brewing Company
http://www.rahrbrewing.com
0
57
...
71
28.28
3.43
[ March 26, 201512 oz. bottle, pilsner glassA ...
NaN
/beer/style/147/
/beer/profile/9969/20193/
0
[amber, pilsenerl, dissipatess, blueberry, niceo]
[(3841, 0.731917), (8163, 0.725572), (17265, 0...
17265
6943
5.8
Year-round
81
Irish Red Ale
Massachusetts
Boston Beer Company (Samuel Adams)
http://samueladams.com
1
256
...
982
22.75
3.56
[ The beer pours a bright, dark, almost ruby, ...
NaN
/beer/style/161/
/beer/profile/35/38365/
42
[reddish, red, malty, toast, diacytl]
[(3841, 0.810698), (11740, 0.798932), (16624, ...
19644
9106
6.1
Year-round
80
Extra Special / Strong Bitter (ESB)
Delaware
16 Mile Brewing Company
http://www.16milebrewery.com/
0
28
...
62
22.79
3.51
[ Cross between an ESB and Amber Ale. Cherry, ...
NaN
/beer/style/66/
/beer/profile/20688/51645/
1
[aluminum, amber, delaware, semidry, broth]
[(3841, 0.772437), (1021, 0.77172), (17265, 0....
2230
11818
5.2
Year-round
-
American Amber / Red Ale
Texas
Branchline Brewing Co.
http://branchlinebrewing.com/
0
14
...
7
34.77
3.71
[ Had it on draft at the Nao restaurant in San...
NaN
/beer/style/128/
/beer/profile/30882/93111/
1
[mirage, stood, eachother, flaunt, train]
[(9383, 0.672777), (10909, 0.652964), (3847, 0...
5 rows × 22 columns
In [273]:
# get the reviews for a beer
beer_name_inputted = 1
try:
doc= documents[beers[beers.name == text_input].index[0]]
except IndexError:
print 'Beer Name Not Inputted'
doc = text_input
beer_name_inputted = 0
vec_bow = dictionary.doc2bow(doc.lower().split())
vec_lsi = lsi[vec_bow]
sims = index[vec_lsi]
similar_beers = []
for beer in sorted(enumerate(sims), key = lambda x: -x[1])[beer_name_inputted:beer_name_inputted+5]:
similar_beers.append(beer[0])
print(beers.name.iloc[beer[0]] + '\t:\t%.2f' % (beer[1]*100))
similar_beers = beers.iloc[similar_beers,:]
Epicenter Amber : 67.44
Texas Red Amber Lager : 66.24
Samuel Adams Irish Red : 65.35
Amber Sun Ale : 64.69
Evil Owl Amber : 64.63
In [237]:
input_beer_keywords = []
for item in sorted(corpus_tfidf[beers[beers.name == text_input].index[0]], key = lambda x: -x[1])[:5]:
if frequency[dictionary[item[0]]] > 50:
input_beer_keywords.append(dictionary[item[0]])
similar_beer_words = []
for beer in list(similar_beers.index):
similar_beer_words.append([dictionary[item[0]] for item in
sorted(corpus_tfidf[beer], key = lambda x: -x[1])[:5]
if dictionary[item[0]] in input_beer_keywords])
In [238]:
print input_beer_keywords
print similar_beer_words
[u'pils', u'pilsener', u'german', u'lemon', u'floral']
[[u'pils', u'lemon'], [u'pils', u'pilsener', u'lemon'], [u'pils', u'german', u'pilsener'], [u'pils', u'german', u'pilsener', u'lemon'], [u'pils', u'pilsener', u'german', u'floral']]
In [239]:
# similar_beer_words = []
# for beer in list(similar_beers.index):
# similar_beer_words.append([dictionary[item[0]] for item in sorted(corpus_tfidf[beer], key = lambda x: -x[1])[:5] if dictionary[item[0]] in input_beer_keywords])
# return (input_beer_keywords, similar_beer_words)
# get_beer_keywords(text_input)
Out[239]:
([u'pils', u'pilsener', u'german', u'lemon', u'floral'],
[[u'pils', u'lemon'],
[u'pils', u'pilsener', u'lemon'],
[u'pils', u'german', u'pilsener'],
[u'pils', u'german', u'pilsener', u'lemon'],
[u'pils', u'pilsener', u'german', u'floral']])
In [240]:
# TAKE DUMPS
In [241]:
pickle.dump(documents,open('app/models/documents.pkl','wb'))
In [242]:
pickle.dump(dictionary,open('app/models/dictionary.pkl','wb'))
In [243]:
pickle.dump(lsi,open('app/models/lsi.pkl','wb'))
In [244]:
pickle.dump(corpus,open('app/models/corpus.pkl','wb'))
In [245]:
pickle.dump(index,open('app/models/index.pkl','wb'))
In [ ]:
beers.drop(['soup','reviews'],axis=1,inplace=True)
In [296]:
beers.to_pickle('app/models/beer_review_df.pkl')
In [247]:
pickle.dump(corpus_tfidf,open('app/models/tfidf.pkl','wb'))
In [457]:
from sklearn.cluster import KMeans
In [ ]:
In [ ]:
###
# SHOULD PROBABLY PUT THE VISUALIZATION STUFF IN ANOTHER NOTEBOOK
###
In [80]:
lsi_2 = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=2)
In [90]:
vec_bow = dictionary.doc2bow(documents[0].lower().split())
lsi_2[vec_bow]
Out[90]:
[(0, 2.4739975395184524), (1, 0.81002729345695423)]
In [200]:
def get_two_topic_lsi(row):
doc= documents[row['index']]
vec_bow = dictionary.doc2bow(doc.lower().split())
res = lsi_2[vec_bow]
if len(res) == 0:
res = [(0,np.nan),(0,np.nan)]
row['cmpX'] = res[0][1]
row['cmpY'] = res[1][1]
return row
In [204]:
tqdm_pandas(tqdm())
beers = beers.progress_apply(get_two_topic_lsi,axis=1)
0it [00:00, ?it/s]
10%|█ | 2/20 [00:00<00:01, 10.56it/s]
30%|███ | 6/20 [00:00<00:01, 13.51it/s]
70%|███████ | 14/20 [00:00<00:00, 17.89it/s]
95%|█████████▌| 19/20 [00:00<00:00, 21.53it/s]
24it [00:00, 25.69it/s]
33it [00:00, 32.27it/s]
39it [00:00, 35.94it/s]
45it [00:01, 37.01it/s]
53it [00:01, 43.53it/s]
60it [00:01, 48.15it/s]
67it [00:01, 52.99it/s]
74it [00:01, 54.73it/s]
82it [00:01, 59.81it/s]
89it [00:01, 62.04it/s]
96it [00:01, 60.62it/s]
103it [00:01, 58.78it/s]
114it [00:02, 66.28it/s]
124it [00:02, 73.44it/s]
137it [00:02, 82.70it/s]
154it [00:02, 96.03it/s]
167it [00:02, 100.73it/s]
179it [00:02, 89.15it/s]
189it [00:02, 88.33it/s]
199it [00:02, 87.93it/s]
210it [00:02, 91.65it/s]
223it [00:03, 100.34it/s]
236it [00:03, 107.14it/s]
250it [00:03, 113.55it/s]
262it [00:03, 105.99it/s]
274it [00:03, 103.58it/s]
286it [00:03, 104.25it/s]
297it [00:03, 104.51it/s]
308it [00:03, 102.54it/s]
319it [00:03, 96.91it/s]
329it [00:04, 93.50it/s]
341it [00:04, 100.07it/s]
354it [00:04, 107.28it/s]
370it [00:04, 117.18it/s]
383it [00:04, 109.29it/s]
396it [00:04, 109.98it/s]
408it [00:04, 109.93it/s]
420it [00:04, 96.27it/s]
431it [00:05, 90.09it/s]
441it [00:05, 90.93it/s]
452it [00:05, 94.67it/s]
464it [00:05, 97.64it/s]
477it [00:05, 105.40it/s]
493it [00:05, 116.23it/s]
510it [00:05, 122.92it/s]
523it [00:05, 108.35it/s]
535it [00:06, 106.57it/s]
549it [00:06, 113.73it/s]
561it [00:06, 112.31it/s]
573it [00:06, 109.01it/s]
585it [00:06, 81.72it/s]
595it [00:06, 77.56it/s]
610it [00:06, 90.17it/s]
623it [00:06, 98.46it/s]
635it [00:07, 96.13it/s]
647it [00:07, 99.09it/s]
658it [00:07, 98.22it/s]
670it [00:07, 101.07it/s]
681it [00:07, 98.80it/s]
694it [00:07, 103.28it/s]
705it [00:07, 82.68it/s]
716it [00:07, 88.67it/s]
729it [00:08, 96.81it/s]
742it [00:08, 101.03it/s]
755it [00:08, 106.89it/s]
769it [00:08, 114.48it/s]
785it [00:08, 124.06it/s]
800it [00:08, 130.78it/s]
814it [00:08, 128.69it/s]
828it [00:08, 121.49it/s]
845it [00:08, 132.66it/s]
859it [00:09, 126.83it/s]
874it [00:09, 132.97it/s]
890it [00:09, 137.40it/s]
905it [00:09, 131.90it/s]
919it [00:09, 131.05it/s]
933it [00:09, 123.04it/s]
949it [00:09, 127.56it/s]
965it [00:09, 135.41it/s]
979it [00:09, 131.52it/s]
993it [00:10, 128.96it/s]
1007it [00:10, 119.99it/s]
1022it [00:10, 125.91it/s]
1035it [00:10, 100.58it/s]
1048it [00:10, 105.74it/s]
1061it [00:10, 111.34it/s]
1074it [00:10, 114.43it/s]
1086it [00:10, 103.97it/s]
1097it [00:11, 103.15it/s]
1108it [00:11, 101.49it/s]
1119it [00:11, 100.26it/s]
1130it [00:11, 100.50it/s]
1145it [00:11, 104.68it/s]
1156it [00:11, 96.92it/s]
1166it [00:11, 84.57it/s]
1175it [00:11, 84.45it/s]
1191it [00:11, 98.26it/s]
1205it [00:12, 107.49it/s]
1220it [00:12, 113.82it/s]
1233it [00:12, 116.27it/s]
1246it [00:12, 101.37it/s]
1259it [00:12, 107.05it/s]
1272it [00:12, 112.13it/s]
1288it [00:12, 119.99it/s]
1307it [00:12, 134.63it/s]
1326it [00:12, 144.24it/s]
1342it [00:13, 133.72it/s]
1357it [00:13, 123.86it/s]
1373it [00:13, 131.56it/s]
1387it [00:13, 121.66it/s]
1400it [00:13, 112.84it/s]
1412it [00:13, 101.15it/s]
1424it [00:13, 105.33it/s]
1435it [00:14, 100.82it/s]
1447it [00:14, 104.58it/s]
1458it [00:14, 103.77it/s]
1473it [00:14, 113.87it/s]
1490it [00:14, 126.13it/s]
1507it [00:14, 136.54it/s]
1524it [00:14, 144.71it/s]
1540it [00:14, 140.45it/s]
1555it [00:14, 131.02it/s]
1569it [00:15, 122.12it/s]
1584it [00:15, 129.14it/s]
1598it [00:15, 128.94it/s]
1612it [00:15, 126.76it/s]
1625it [00:15, 120.75it/s]
1638it [00:15, 118.13it/s]
1653it [00:15, 125.01it/s]
1666it [00:15, 121.81it/s]
1679it [00:15, 117.81it/s]
1691it [00:16, 110.35it/s]
1703it [00:16, 101.02it/s]
1715it [00:16, 103.91it/s]
1730it [00:16, 114.37it/s]
1742it [00:16, 108.08it/s]
1755it [00:16, 111.58it/s]
1768it [00:16, 116.31it/s]
1780it [00:16, 104.67it/s]
1792it [00:16, 105.04it/s]
1806it [00:17, 111.70it/s]
1818it [00:17, 110.08it/s]
1832it [00:17, 117.53it/s]
1848it [00:17, 123.04it/s]
1866it [00:17, 133.96it/s]
1880it [00:17, 129.34it/s]
1894it [00:17, 127.60it/s]
1910it [00:17, 135.51it/s]
1929it [00:17, 144.92it/s]
1944it [00:18, 134.77it/s]
1959it [00:18, 134.70it/s]
1973it [00:18, 125.81it/s]
1986it [00:18, 118.14it/s]
1999it [00:18, 120.01it/s]
2012it [00:18, 118.92it/s]
2030it [00:18, 130.94it/s]
2045it [00:18, 135.57it/s]
2059it [00:19, 131.90it/s]
2074it [00:19, 135.90it/s]
2089it [00:19, 138.07it/s]
2110it [00:19, 149.53it/s]
2126it [00:19, 119.47it/s]
2140it [00:19, 109.49it/s]
2152it [00:19, 109.57it/s]
2171it [00:19, 123.82it/s]
2187it [00:19, 130.60it/s]
2201it [00:20, 127.67it/s]
2217it [00:20, 135.24it/s]
2233it [00:20, 140.08it/s]
2248it [00:20, 134.16it/s]
2262it [00:20, 109.77it/s]
2275it [00:20, 114.05it/s]
2288it [00:20, 113.54it/s]
2300it [00:20, 110.41it/s]
2312it [00:21, 104.44it/s]
2324it [00:21, 105.56it/s]
2335it [00:21, 90.07it/s]
2345it [00:21, 90.46it/s]
2356it [00:21, 91.60it/s]
2366it [00:21, 87.90it/s]
2376it [00:21, 84.47it/s]
2389it [00:21, 93.73it/s]
2399it [00:22, 94.02it/s]
2412it [00:22, 100.31it/s]
2423it [00:22, 90.45it/s]
2433it [00:22, 89.36it/s]
2444it [00:22, 91.03it/s]
2454it [00:22, 87.58it/s]
2466it [00:22, 93.22it/s]
2480it [00:22, 102.31it/s]
2498it [00:22, 115.44it/s]
2514it [00:23, 124.99it/s]
2528it [00:23, 111.08it/s]
2540it [00:23, 88.00it/s]
2551it [00:23, 77.79it/s]
2560it [00:23, 76.12it/s]
2569it [00:23, 76.81it/s]
2578it [00:24, 70.15it/s]
2586it [00:24, 60.24it/s]
2593it [00:24, 62.48it/s]
2600it [00:24, 59.72it/s]
2607it [00:24, 61.43it/s]
2616it [00:24, 66.53it/s]
2627it [00:24, 75.25it/s]
2639it [00:24, 83.07it/s]
2658it [00:24, 99.51it/s]
2673it [00:25, 110.61it/s]
2691it [00:25, 124.84it/s]
2709it [00:25, 137.17it/s]
2727it [00:25, 147.57it/s]
2744it [00:25, 147.39it/s]
2760it [00:25, 144.01it/s]
2776it [00:25, 142.50it/s]
2791it [00:25, 138.62it/s]
2807it [00:25, 143.18it/s]
2822it [00:26, 142.78it/s]
2837it [00:26, 125.92it/s]
2854it [00:26, 135.36it/s]
2869it [00:26, 124.12it/s]
2884it [00:26, 129.26it/s]
2898it [00:26, 125.04it/s]
2911it [00:26, 108.93it/s]
2924it [00:26, 113.95it/s]
2936it [00:27, 101.50it/s]
2948it [00:27, 104.28it/s]
2962it [00:27, 111.16it/s]
2978it [00:27, 121.07it/s]
2995it [00:27, 131.62it/s]
3010it [00:27, 134.38it/s]
3024it [00:27, 133.86it/s]
3038it [00:27, 119.28it/s]
3052it [00:27, 123.74it/s]
3065it [00:28, 117.80it/s]
3081it [00:28, 127.92it/s]
3095it [00:28, 127.79it/s]
3109it [00:28, 125.22it/s]
3122it [00:28, 115.42it/s]
3138it [00:28, 125.40it/s]
3156it [00:28, 134.96it/s]
3171it [00:28, 121.31it/s]
3184it [00:29, 122.59it/s]
3204it [00:29, 134.24it/s]
3220it [00:29, 133.52it/s]
3234it [00:29, 125.75it/s]
3256it [00:29, 144.00it/s]
3277it [00:29, 156.79it/s]
3294it [00:29, 143.64it/s]
3311it [00:29, 149.92it/s]
3334it [00:29, 166.43it/s]
3352it [00:30, 154.86it/s]
3369it [00:30, 140.49it/s]
3384it [00:30, 131.30it/s]
3398it [00:30, 126.84it/s]
3412it [00:30, 117.63it/s]
3430it [00:30, 128.72it/s]
3444it [00:30, 123.77it/s]
3464it [00:30, 139.07it/s]
3481it [00:31, 142.48it/s]
3496it [00:31, 134.98it/s]
3511it [00:31, 135.88it/s]
3525it [00:31, 133.23it/s]
3539it [00:31, 109.85it/s]
3551it [00:31, 107.03it/s]
3563it [00:31, 99.97it/s]
3574it [00:31, 91.10it/s]
3584it [00:32, 85.40it/s]
3593it [00:32, 81.90it/s]
3602it [00:32, 72.38it/s]
3610it [00:32, 73.71it/s]
3619it [00:32, 76.70it/s]
3627it [00:32, 71.22it/s]
3638it [00:32, 79.44it/s]
3654it [00:32, 92.37it/s]
3669it [00:33, 102.73it/s]
3686it [00:33, 112.11it/s]
3699it [00:33, 111.28it/s]
3711it [00:33, 110.89it/s]
3723it [00:33, 112.28it/s]
3737it [00:33, 117.26it/s]
3750it [00:33, 115.55it/s]
3766it [00:33, 122.59it/s]
3782it [00:33, 130.34it/s]
3797it [00:34, 134.34it/s]
3811it [00:34, 129.14it/s]
3831it [00:34, 142.17it/s]
3851it [00:34, 153.33it/s]
3867it [00:34, 149.59it/s]
3883it [00:34, 135.75it/s]
3902it [00:34, 148.11it/s]
3918it [00:34, 136.12it/s]
3934it [00:34, 141.13it/s]
3949it [00:35, 128.32it/s]
3963it [00:35, 127.74it/s]
3979it [00:35, 131.34it/s]
3995it [00:35, 137.26it/s]
4010it [00:35, 136.62it/s]
4024it [00:35, 127.81it/s]
4038it [00:35, 129.88it/s]
4052it [00:35, 126.64it/s]
4066it [00:35, 130.26it/s]
4080it [00:36, 126.99it/s]
4096it [00:36, 130.74it/s]
4113it [00:36, 138.03it/s]
4127it [00:36, 137.93it/s]
4141it [00:36, 127.17it/s]
4156it [00:36, 130.24it/s]
4170it [00:36, 128.94it/s]
4189it [00:36, 141.90it/s]
4204it [00:37, 132.93it/s]
4218it [00:37, 129.77it/s]
4232it [00:37, 124.59it/s]
4245it [00:37, 113.71it/s]
4257it [00:37, 87.30it/s]
4270it [00:37, 95.99it/s]
4283it [00:37, 103.84it/s]
4296it [00:37, 110.22it/s]
4310it [00:38, 115.80it/s]
4323it [00:38, 117.50it/s]
4336it [00:38, 116.99it/s]
4352it [00:38, 121.66it/s]
4365it [00:38, 123.74it/s]
4378it [00:38, 125.19it/s]
4392it [00:38, 128.51it/s]
4405it [00:38, 120.67it/s]
4418it [00:38, 111.38it/s]
4430it [00:39, 112.30it/s]
4442it [00:39, 111.01it/s]
4456it [00:39, 117.63it/s]
4469it [00:39, 119.46it/s]
4484it [00:39, 126.76it/s]
4497it [00:39, 119.37it/s]
4511it [00:39, 120.98it/s]
4524it [00:39, 123.06it/s]
4537it [00:39, 109.85it/s]
4553it [00:40, 119.23it/s]
4566it [00:40, 121.43it/s]
4579it [00:40, 117.49it/s]
4592it [00:40, 119.74it/s]
4609it [00:40, 129.46it/s]
4623it [00:40, 129.54it/s]
4637it [00:40, 119.88it/s]
4650it [00:40, 116.65it/s]
4664it [00:40, 121.37it/s]
4677it [00:41, 111.07it/s]
4689it [00:41, 101.50it/s]
4702it [00:41, 108.51it/s]
4722it [00:41, 124.18it/s]
4736it [00:41, 126.89it/s]
4750it [00:41, 125.87it/s]
4766it [00:41, 133.66it/s]
4781it [00:41, 134.54it/s]
4795it [00:41, 130.26it/s]
4811it [00:42, 135.67it/s]
4828it [00:42, 139.90it/s]
4843it [00:42, 141.70it/s]
4863it [00:42, 149.16it/s]
4879it [00:42, 144.79it/s]
4894it [00:42, 140.99it/s]
4909it [00:42, 134.85it/s]
4923it [00:42, 135.30it/s]
4941it [00:42, 145.78it/s]
4957it [00:43, 144.46it/s]
4972it [00:43, 143.29it/s]
4992it [00:43, 155.79it/s]
5012it [00:43, 164.42it/s]
5029it [00:43, 156.67it/s]
5046it [00:43, 152.40it/s]
5066it [00:43, 163.83it/s]
5083it [00:43, 152.49it/s]
5099it [00:43, 146.65it/s]
5115it [00:44, 136.07it/s]
5130it [00:44, 132.78it/s]
5147it [00:44, 141.00it/s]
5162it [00:44, 135.38it/s]
5178it [00:44, 138.14it/s]
5194it [00:44, 142.84it/s]
5209it [00:44, 129.47it/s]
5223it [00:44, 129.26it/s]
5237it [00:45, 125.81it/s]
5250it [00:45, 118.71it/s]
5266it [00:45, 127.39it/s]
5280it [00:45, 123.60it/s]
5295it [00:45, 127.41it/s]
5314it [00:45, 140.14it/s]
5329it [00:45, 133.79it/s]
5343it [00:45, 131.15it/s]
5357it [00:45, 126.69it/s]
5372it [00:46, 131.41it/s]
5386it [00:46, 133.19it/s]
5400it [00:46, 131.92it/s]
5414it [00:46, 126.22it/s]
5431it [00:46, 133.49it/s]
5445it [00:46, 108.41it/s]
5457it [00:46, 103.52it/s]
5470it [00:46, 109.57it/s]
5488it [00:47, 121.28it/s]
5501it [00:47, 97.36it/s]
5513it [00:47, 94.55it/s]
5528it [00:47, 103.56it/s]
5540it [00:47, 94.60it/s]
5551it [00:47, 93.13it/s]
5561it [00:47, 90.25it/s]
5574it [00:47, 99.15it/s]
5585it [00:48, 99.70it/s]
5597it [00:48, 103.76it/s]
5608it [00:48, 96.89it/s]
5620it [00:48, 102.44it/s]
5633it [00:48, 105.35it/s]
5644it [00:48, 93.29it/s]
5654it [00:48, 81.45it/s]
5670it [00:48, 93.80it/s]
5684it [00:49, 103.30it/s]
5696it [00:49, 99.69it/s]
5707it [00:49, 97.71it/s]
5720it [00:49, 102.68it/s]
5736it [00:49, 113.57it/s]
5749it [00:49, 115.17it/s]
5761it [00:49, 94.07it/s]
5772it [00:49, 95.27it/s]
5783it [00:50, 96.79it/s]
5794it [00:50, 92.47it/s]
5804it [00:50, 81.80it/s]
5813it [00:50, 83.89it/s]
5822it [00:50, 84.72it/s]
5831it [00:50, 81.38it/s]
5844it [00:50, 91.56it/s]
5856it [00:50, 95.51it/s]
5869it [00:50, 102.23it/s]
5880it [00:51, 98.92it/s]
5891it [00:51, 90.91it/s]
5905it [00:51, 95.66it/s]
5915it [00:51, 89.98it/s]
5925it [00:51, 81.06it/s]
5934it [00:51, 81.06it/s]
5944it [00:51, 83.68it/s]
5955it [00:51, 85.15it/s]
5964it [00:52, 70.01it/s]
5976it [00:52, 78.81it/s]
5987it [00:52, 82.12it/s]
5998it [00:52, 88.84it/s]
6014it [00:52, 101.70it/s]
6031it [00:52, 111.57it/s]
6044it [00:52, 107.01it/s]
6056it [00:52, 107.92it/s]
6068it [00:53, 97.44it/s]
6080it [00:53, 99.17it/s]
6091it [00:53, 95.49it/s]
6102it [00:53, 98.10it/s]
6117it [00:53, 109.14it/s]
6129it [00:53, 88.99it/s]
6140it [00:53, 90.88it/s]
6156it [00:53, 103.89it/s]
6170it [00:54, 102.98it/s]
6182it [00:54, 95.69it/s]
6193it [00:54, 98.07it/s]
6206it [00:54, 105.05it/s]
6219it [00:54, 110.95it/s]
6232it [00:54, 115.31it/s]
6249it [00:54, 125.28it/s]
6266it [00:54, 135.80it/s]
6282it [00:54, 135.49it/s]
6300it [00:55, 143.22it/s]
6316it [00:55, 145.81it/s]
6333it [00:55, 150.76it/s]
6349it [00:55, 141.09it/s]
6364it [00:55, 138.27it/s]
6379it [00:55, 139.07it/s]
6399it [00:55, 152.57it/s]
6415it [00:55, 147.31it/s]
6431it [00:55, 142.01it/s]
6446it [00:56, 141.84it/s]
6461it [00:56, 139.16it/s]
6476it [00:56, 134.90it/s]
6493it [00:56, 143.30it/s]
6508it [00:56, 117.56it/s]
6521it [00:56, 107.10it/s]
6535it [00:56, 113.68it/s]
6551it [00:56, 122.62it/s]
6564it [00:57, 119.32it/s]
6577it [00:57, 116.48it/s]
6590it [00:57, 117.06it/s]
6602it [00:57, 99.03it/s]
6613it [00:57, 92.95it/s]
6623it [00:57, 80.12it/s]
6632it [00:57, 75.83it/s]
6641it [00:58, 75.31it/s]
6649it [00:58, 76.62it/s]
6659it [00:58, 79.70it/s]
6669it [00:58, 84.43it/s]
6678it [00:58, 77.35it/s]
6687it [00:58, 79.81it/s]
6696it [00:58, 77.60it/s]
6706it [00:58, 82.12it/s]
6715it [00:58, 79.80it/s]
6729it [00:59, 91.14it/s]
6741it [00:59, 91.83it/s]
6755it [00:59, 100.88it/s]
6766it [00:59, 94.85it/s]
6776it [00:59, 94.00it/s]
6789it [00:59, 98.02it/s]
6802it [00:59, 101.89it/s]
6813it [00:59, 99.44it/s]
6824it [00:59, 100.73it/s]
6836it [01:00, 104.83it/s]
6850it [01:00, 108.04it/s]
6861it [01:00, 88.44it/s]
6873it [01:00, 95.77it/s]
6884it [01:00, 94.70it/s]
6897it [01:00, 101.28it/s]
6908it [01:00, 99.73it/s]
6921it [01:00, 105.54it/s]
6932it [01:01, 102.19it/s]
6948it [01:01, 113.70it/s]
6960it [01:01, 111.08it/s]
6974it [01:01, 116.66it/s]
6989it [01:01, 122.68it/s]
7002it [01:01, 114.87it/s]
7014it [01:01, 103.85it/s]
7027it [01:01, 109.53it/s]
7040it [01:01, 114.38it/s]
7053it [01:02, 118.24it/s]
7066it [01:02, 120.19it/s]
7079it [01:02, 106.33it/s]
7091it [01:02, 107.75it/s]
7106it [01:02, 116.47it/s]
7119it [01:02, 110.98it/s]
7131it [01:02, 104.78it/s]
7146it [01:02, 110.73it/s]
7158it [01:03, 99.21it/s]
7169it [01:03, 95.81it/s]
7179it [01:03, 96.58it/s]
7189it [01:03, 95.39it/s]
7203it [01:03, 104.64it/s]
7215it [01:03, 106.98it/s]
7226it [01:03, 96.48it/s]
7241it [01:03, 107.71it/s]
7261it [01:03, 122.38it/s]
7275it [01:04, 125.43it/s]
7289it [01:04, 123.75it/s]
7302it [01:04, 124.20it/s]
7315it [01:04, 109.48it/s]
7329it [01:04, 116.24it/s]
7343it [01:04, 120.67it/s]
7356it [01:04, 107.81it/s]
7368it [01:04, 102.12it/s]
7379it [01:05, 103.19it/s]
7390it [01:05, 100.38it/s]
7405it [01:05, 105.56it/s]
7421it [01:05, 116.97it/s]
7434it [01:05, 109.75it/s]
7448it [01:05, 116.79it/s]
7461it [01:05, 120.24it/s]
7474it [01:05, 109.73it/s]
7488it [01:05, 116.68it/s]
7506it [01:06, 129.38it/s]
7522it [01:06, 135.33it/s]
7537it [01:06, 123.04it/s]
7552it [01:06, 127.79it/s]
7566it [01:06, 125.95it/s]
7580it [01:06, 129.19it/s]
7594it [01:06, 131.43it/s]
7608it [01:06, 133.56it/s]
7622it [01:06, 115.50it/s]
7637it [01:07, 123.49it/s]
7655it [01:07, 133.88it/s]
7670it [01:07, 124.72it/s]
7684it [01:07, 120.86it/s]
7697it [01:07, 116.97it/s]
7714it [01:07, 128.29it/s]
7728it [01:07, 121.12it/s]
7742it [01:07, 124.29it/s]
7756it [01:08, 127.82it/s]
7772it [01:08, 134.22it/s]
7786it [01:08, 128.90it/s]
7800it [01:08, 128.99it/s]
7814it [01:08, 124.67it/s]
7827it [01:08, 120.14it/s]
7840it [01:08, 111.72it/s]
7854it [01:08, 115.71it/s]
7866it [01:08, 114.73it/s]
7880it [01:09, 118.03it/s]
7892it [01:09, 112.40it/s]
7904it [01:09, 107.80it/s]
7915it [01:09, 86.48it/s]
7925it [01:09, 84.80it/s]
7935it [01:09, 84.09it/s]
7944it [01:09, 82.58it/s]
7954it [01:09, 86.34it/s]
7970it [01:10, 96.83it/s]
7981it [01:10, 100.00it/s]
7992it [01:10, 90.02it/s]
8002it [01:10, 90.78it/s]
8014it [01:10, 95.70it/s]
8027it [01:10, 101.49it/s]
8038it [01:10, 101.07it/s]
8051it [01:10, 107.09it/s]
8062it [01:10, 105.26it/s]
8079it [01:11, 118.67it/s]
8092it [01:11, 117.19it/s]
8105it [01:11, 118.27it/s]
8121it [01:11, 122.37it/s]
8134it [01:11, 119.32it/s]
8147it [01:11, 121.24it/s]
8160it [01:11, 122.24it/s]
8173it [01:11, 122.36it/s]
8186it [01:11, 119.15it/s]
8199it [01:12, 121.94it/s]
8215it [01:12, 131.18it/s]
8229it [01:12, 123.87it/s]
8243it [01:12, 123.25it/s]
8259it [01:12, 129.74it/s]
8275it [01:12, 133.10it/s]
8289it [01:12, 133.74it/s]
8307it [01:12, 143.93it/s]
8322it [01:12, 133.39it/s]
8336it [01:13, 128.10it/s]
8350it [01:13, 125.79it/s]
8363it [01:13, 118.94it/s]
8376it [01:13, 121.66it/s]
8391it [01:13, 123.26it/s]
8406it [01:13, 129.23it/s]
8420it [01:13, 131.57it/s]
8434it [01:13, 124.04it/s]
8452it [01:13, 131.95it/s]
8470it [01:14, 142.20it/s]
8485it [01:14, 138.29it/s]
8500it [01:14, 122.97it/s]
8515it [01:14, 128.54it/s]
8531it [01:14, 136.00it/s]
8546it [01:14, 135.76it/s]
8560it [01:14, 114.95it/s]
8573it [01:14, 117.19it/s]
8588it [01:15, 125.42it/s]
8602it [01:15, 127.00it/s]
8616it [01:15, 112.79it/s]
8631it [01:15, 120.29it/s]
8645it [01:15, 124.60it/s]
8658it [01:15, 123.48it/s]
8675it [01:15, 132.37it/s]
8689it [01:15, 128.00it/s]
8703it [01:15, 118.53it/s]
8719it [01:16, 125.99it/s]
8732it [01:16, 124.17it/s]
8745it [01:16, 120.19it/s]
8762it [01:16, 130.88it/s]
8776it [01:16, 123.24it/s]
8790it [01:16, 126.71it/s]
8804it [01:16, 130.37it/s]
8821it [01:16, 138.83it/s]
8836it [01:16, 140.18it/s]
8851it [01:17, 138.66it/s]
8870it [01:17, 149.46it/s]
8886it [01:17, 148.72it/s]
8904it [01:17, 156.81it/s]
8920it [01:17, 140.62it/s]
8937it [01:17, 147.34it/s]
8953it [01:17, 144.38it/s]
8972it [01:17, 153.89it/s]
8988it [01:17, 150.27it/s]
9004it [01:18, 150.80it/s]
9020it [01:18, 144.69it/s]
9035it [01:18, 127.44it/s]
9049it [01:18, 127.08it/s]
9063it [01:18, 128.72it/s]
9077it [01:18, 124.41it/s]
9092it [01:18, 130.18it/s]
9108it [01:18, 134.78it/s]
9127it [01:18, 147.61it/s]
9143it [01:19, 134.69it/s]
9158it [01:19, 123.25it/s]
9171it [01:19, 120.73it/s]
9184it [01:19, 108.08it/s]
9196it [01:19, 102.93it/s]
9210it [01:19, 111.19it/s]
9222it [01:19, 107.06it/s]
9235it [01:20, 110.81it/s]
9247it [01:20, 98.77it/s]
9258it [01:20, 91.85it/s]
9268it [01:20, 93.24it/s]
9278it [01:20, 93.26it/s]
9291it [01:20, 100.77it/s]
9303it [01:20, 105.46it/s]
9314it [01:20, 102.78it/s]
9325it [01:20, 102.98it/s]
9339it [01:21, 110.12it/s]
9351it [01:21, 100.02it/s]
9362it [01:21, 97.32it/s]
9377it [01:21, 108.15it/s]
9391it [01:21, 114.97it/s]
9405it [01:21, 117.62it/s]
9418it [01:21, 106.89it/s]
9430it [01:21, 103.25it/s]
9441it [01:22, 92.97it/s]
9451it [01:22, 93.81it/s]
9463it [01:22, 93.70it/s]
9473it [01:22, 89.67it/s]
9484it [01:22, 93.07it/s]
9497it [01:22, 100.80it/s]
9516it [01:22, 115.92it/s]
9533it [01:22, 124.76it/s]
9547it [01:22, 127.83it/s]
9563it [01:23, 135.55it/s]
9578it [01:23, 128.26it/s]
9592it [01:23, 118.96it/s]
9613it [01:23, 134.03it/s]
9628it [01:23, 134.82it/s]
9643it [01:23, 138.52it/s]
9660it [01:23, 142.77it/s]
9675it [01:23, 133.93it/s]
9689it [01:23, 128.32it/s]
9705it [01:24, 135.49it/s]
9722it [01:24, 142.74it/s]
9737it [01:24, 127.20it/s]
9751it [01:24, 129.46it/s]
9765it [01:24, 130.28it/s]
9779it [01:24, 124.81it/s]
9794it [01:24, 130.06it/s]
9808it [01:24, 122.47it/s]
9825it [01:25, 132.62it/s]
9839it [01:25, 133.12it/s]
9853it [01:25, 128.49it/s]
9867it [01:25, 111.00it/s]
9879it [01:25, 109.07it/s]
9891it [01:25, 112.04it/s]
9907it [01:25, 122.24it/s]
9920it [01:25, 120.46it/s]
9935it [01:25, 123.31it/s]
9948it [01:26, 121.49it/s]
9961it [01:26, 121.99it/s]
9974it [01:26, 113.09it/s]
9987it [01:26, 117.08it/s]
10001it [01:26, 120.33it/s]
10019it [01:26, 132.41it/s]
10035it [01:26, 132.38it/s]
10049it [01:26, 133.23it/s]
10063it [01:26, 126.74it/s]
10078it [01:27, 130.72it/s]
10092it [01:27, 123.08it/s]
10105it [01:27, 125.02it/s]
10119it [01:27, 129.01it/s]
10133it [01:27, 116.67it/s]
10146it [01:27, 120.33it/s]
10165it [01:27, 131.93it/s]
10179it [01:27, 127.52it/s]
10193it [01:28, 121.21it/s]
10208it [01:28, 128.27it/s]
10225it [01:28, 138.22it/s]
10240it [01:28, 126.14it/s]
10254it [01:28, 125.92it/s]
10270it [01:28, 130.74it/s]
10294it [01:28, 150.50it/s]
10311it [01:28, 152.55it/s]
10328it [01:28, 149.27it/s]
10344it [01:29, 142.16it/s]
10359it [01:29, 139.91it/s]
10374it [01:29, 120.95it/s]
10393it [01:29, 132.55it/s]
10408it [01:29, 131.24it/s]
10423it [01:29, 135.41it/s]
10437it [01:29, 131.59it/s]
10451it [01:29, 128.97it/s]
10467it [01:29, 135.65it/s]
10481it [01:30, 136.42it/s]
10498it [01:30, 144.48it/s]
10513it [01:30, 137.23it/s]
10528it [01:30, 139.01it/s]
10544it [01:30, 141.93it/s]
10559it [01:30, 134.10it/s]
10575it [01:30, 138.14it/s]
10591it [01:30, 135.87it/s]
10605it [01:31, 115.73it/s]
10618it [01:31, 103.33it/s]
10630it [01:31, 104.62it/s]
10648it [01:31, 118.44it/s]
10661it [01:31, 100.21it/s]
10673it [01:31, 102.98it/s]
10687it [01:31, 111.60it/s]
10702it [01:31, 120.63it/s]
10720it [01:31, 133.56it/s]
10735it [01:32, 135.55it/s]
10750it [01:32, 99.21it/s]
10766it [01:32, 111.15it/s]
10779it [01:32, 99.31it/s]
10793it [01:32, 108.10it/s]
10806it [01:32, 109.34it/s]
10818it [01:32, 105.46it/s]
10833it [01:33, 113.32it/s]
10850it [01:33, 122.97it/s]
10864it [01:33, 120.78it/s]
10877it [01:33, 114.17it/s]
10889it [01:33, 108.52it/s]
10903it [01:33, 116.36it/s]
10919it [01:33, 126.23it/s]
10933it [01:33, 127.07it/s]
10947it [01:33, 124.87it/s]
10964it [01:34, 133.97it/s]
10978it [01:34, 132.79it/s]
10992it [01:34, 126.78it/s]
11006it [01:34, 128.57it/s]
11020it [01:34, 125.59it/s]
11035it [01:34, 131.84it/s]
11049it [01:34, 130.56it/s]
11063it [01:34, 121.79it/s]
11076it [01:34, 118.20it/s]
11088it [01:35, 116.71it/s]
11104it [01:35, 125.98it/s]
11117it [01:35, 126.10it/s]
11132it [01:35, 131.77it/s]
11146it [01:35, 132.14it/s]
11163it [01:35, 138.96it/s]
11178it [01:35, 135.44it/s]
11193it [01:35, 135.26it/s]
11207it [01:35, 135.77it/s]
11221it [01:36, 133.28it/s]
11237it [01:36, 139.77it/s]
11252it [01:36, 141.02it/s]
11267it [01:36, 140.63it/s]
11285it [01:36, 150.16it/s]
11301it [01:36, 138.67it/s]
11317it [01:36, 140.38it/s]
11332it [01:36, 140.71it/s]
11347it [01:36, 138.69it/s]
11361it [01:37, 120.20it/s]
11374it [01:37, 117.89it/s]
11387it [01:37, 106.82it/s]
11404it [01:37, 119.75it/s]
11423it [01:37, 133.83it/s]
11439it [01:37, 140.40it/s]
11454it [01:37, 135.03it/s]
11469it [01:37, 131.63it/s]
11487it [01:37, 142.17it/s]
11502it [01:38, 143.63it/s]
11517it [01:38, 134.39it/s]
11531it [01:38, 133.35it/s]
11550it [01:38, 146.31it/s]
11567it [01:38, 147.49it/s]
11583it [01:38, 128.98it/s]
11597it [01:38, 104.08it/s]
11609it [01:39, 88.28it/s]
11620it [01:39, 66.82it/s]
11630it [01:39, 68.62it/s]
11643it [01:39, 79.00it/s]
11653it [01:39, 74.37it/s]
11662it [01:39, 71.90it/s]
11676it [01:39, 84.15it/s]
11687it [01:40, 89.02it/s]
11697it [01:40, 86.45it/s]
11710it [01:40, 94.43it/s]
11728it [01:40, 109.09it/s]
11741it [01:40, 113.47it/s]
11754it [01:40, 116.67it/s]
11768it [01:40, 122.68it/s]
11781it [01:40, 101.77it/s]
11793it [01:41, 97.20it/s]
11804it [01:41, 88.83it/s]
11814it [01:41, 77.48it/s]
11823it [01:41, 79.99it/s]
11832it [01:41, 75.10it/s]
11840it [01:41, 70.60it/s]
11849it [01:41, 75.12it/s]
11860it [01:41, 82.85it/s]
11878it [01:42, 98.42it/s]
11894it [01:42, 109.30it/s]
11912it [01:42, 120.14it/s]
11926it [01:42, 112.05it/s]
11939it [01:42, 109.73it/s]
11951it [01:42, 111.39it/s]
11963it [01:42, 106.38it/s]
11975it [01:42, 86.08it/s]
11987it [01:43, 90.61it/s]
11999it [01:43, 97.32it/s]
12012it [01:43, 104.83it/s]
12024it [01:43, 107.06it/s]
12036it [01:43, 110.64it/s]
12048it [01:43, 100.75it/s]
12062it [01:43, 108.55it/s]
12076it [01:43, 115.31it/s]
12093it [01:43, 124.25it/s]
12106it [01:44, 120.15it/s]
12121it [01:44, 123.89it/s]
12134it [01:44, 123.57it/s]
12147it [01:44, 123.05it/s]
12160it [01:44, 123.77it/s]
12176it [01:44, 128.37it/s]
12192it [01:44, 135.67it/s]
12206it [01:44, 132.39it/s]
12221it [01:44, 131.92it/s]
12238it [01:45, 136.78it/s]
12252it [01:45, 133.55it/s]
12268it [01:45, 140.02it/s]
12283it [01:45, 128.89it/s]
12306it [01:45, 147.38it/s]
12322it [01:45, 144.18it/s]
12339it [01:45, 150.32it/s]
12355it [01:45, 144.21it/s]
12370it [01:45, 134.31it/s]
12384it [01:46, 131.56it/s]
12398it [01:46, 127.33it/s]
12412it [01:46, 127.84it/s]
12425it [01:46, 119.70it/s]
12438it [01:46, 109.17it/s]
12450it [01:46, 107.63it/s]
12465it [01:46, 113.17it/s]
12484it [01:46, 128.45it/s]
12498it [01:47, 116.04it/s]
12511it [01:47, 111.45it/s]
12526it [01:47, 120.33it/s]
12539it [01:47, 122.89it/s]
12552it [01:47, 116.84it/s]
12567it [01:47, 122.83it/s]
12580it [01:47, 115.96it/s]
12596it [01:47, 126.11it/s]
12614it [01:47, 135.21it/s]
12629it [01:48, 131.63it/s]
12643it [01:48, 116.17it/s]
12661it [01:48, 128.98it/s]
12680it [01:48, 141.80it/s]
12696it [01:48, 136.49it/s]
12711it [01:48, 134.72it/s]
12725it [01:48, 130.91it/s]
12739it [01:48, 128.50it/s]
12753it [01:49, 120.76it/s]
12767it [01:49, 124.36it/s]
12780it [01:49, 125.46it/s]
12793it [01:49, 125.37it/s]
12811it [01:49, 136.85it/s]
12829it [01:49, 147.42it/s]
12845it [01:49, 138.22it/s]
12860it [01:49, 138.78it/s]
12878it [01:49, 148.47it/s]
12895it [01:49, 153.23it/s]
12911it [01:50, 144.38it/s]
12929it [01:50, 149.46it/s]
12948it [01:50, 159.30it/s]
12965it [01:50, 141.65it/s]
12980it [01:50, 138.02it/s]
12995it [01:50, 139.03it/s]
13010it [01:50, 134.60it/s]
13024it [01:50, 130.78it/s]
13038it [01:51, 128.40it/s]
13051it [01:51, 127.57it/s]
13065it [01:51, 130.99it/s]
13081it [01:51, 135.53it/s]
13097it [01:51, 141.09it/s]
13112it [01:51, 137.54it/s]
13127it [01:51, 137.57it/s]
13143it [01:51, 142.94it/s]
13158it [01:51, 127.61it/s]
13172it [01:52, 130.67it/s]
13186it [01:52, 125.32it/s]
13199it [01:52, 120.91it/s]
13212it [01:52, 113.99it/s]
13226it [01:52, 120.53it/s]
13239it [01:52, 119.78it/s]
13252it [01:52, 119.35it/s]
13265it [01:52, 120.34it/s]
13278it [01:52, 121.70it/s]
13292it [01:53, 125.86it/s]
13305it [01:53, 119.78it/s]
13318it [01:53, 114.86it/s]
13330it [01:53, 113.07it/s]
13343it [01:53, 116.44it/s]
13359it [01:53, 125.47it/s]
13376it [01:53, 135.21it/s]
13390it [01:53, 125.67it/s]
13403it [01:53, 109.99it/s]
13417it [01:54, 113.58it/s]
13430it [01:54, 116.21it/s]
13444it [01:54, 118.08it/s]
13457it [01:54, 116.63it/s]
13476it [01:54, 131.85it/s]
13490it [01:54, 126.18it/s]
13504it [01:54, 123.34it/s]
13517it [01:54, 120.85it/s]
13530it [01:55, 117.52it/s]
13542it [01:55, 102.66it/s]
13553it [01:55, 103.41it/s]
13566it [01:55, 109.78it/s]
13578it [01:55, 107.46it/s]
13590it [01:55, 109.73it/s]
13602it [01:55, 111.99it/s]
13614it [01:55, 98.24it/s]
13625it [01:55, 99.50it/s]
13637it [01:56, 104.25it/s]
13648it [01:56, 95.69it/s]
13661it [01:56, 103.04it/s]
13672it [01:56, 97.98it/s]
13683it [01:56, 91.27it/s]
13693it [01:56, 90.85it/s]
13703it [01:56, 92.34it/s]
13719it [01:56, 102.56it/s]
13730it [01:57, 94.32it/s]
13740it [02:06, 3.44it/s]
13751it [02:06, 4.85it/s]
13763it [02:06, 6.80it/s]
13776it [02:06, 9.51it/s]
13787it [02:06, 12.94it/s]
13801it [02:07, 17.63it/s]
13812it [02:07, 23.42it/s]
13823it [02:07, 30.64it/s]
13834it [02:07, 37.59it/s]
13848it [02:07, 47.94it/s]
13860it [02:07, 58.08it/s]
13871it [02:07, 67.27it/s]
13882it [02:07, 72.08it/s]
13893it [02:07, 78.58it/s]
13907it [02:08, 87.76it/s]
13918it [02:08, 87.29it/s]
13932it [02:08, 97.58it/s]
13945it [02:08, 103.40it/s]
13957it [02:08, 102.20it/s]
13968it [02:08, 103.31it/s]
13983it [02:08, 113.77it/s]
13997it [02:08, 115.59it/s]
14010it [02:08, 106.45it/s]
14022it [02:09, 104.38it/s]
14036it [02:09, 111.67it/s]
14048it [02:09, 111.31it/s]
14060it [02:09, 107.51it/s]
14076it [02:09, 118.53it/s]
14089it [02:09, 119.07it/s]
14102it [02:09, 116.67it/s]
14114it [02:09, 102.43it/s]
14125it [02:10, 94.09it/s]
14135it [02:10, 92.80it/s]
14145it [02:10, 91.80it/s]
14156it [02:10, 92.78it/s]
14168it [02:10, 99.13it/s]
14179it [02:10, 95.16it/s]
14191it [02:10, 100.76it/s]
14202it [02:10, 100.42it/s]
14213it [02:10, 98.77it/s]
14229it [02:11, 110.91it/s]
14241it [02:11, 105.95it/s]
14253it [02:11, 108.56it/s]
14266it [02:11, 113.03it/s]
14278it [02:11, 108.16it/s]
14291it [02:11, 110.09it/s]
14303it [02:11, 105.26it/s]
14317it [02:11, 113.06it/s]
14329it [02:11, 112.87it/s]
14341it [02:12, 107.79it/s]
14352it [02:12, 101.33it/s]
14363it [02:12, 97.18it/s]
14373it [02:12, 93.19it/s]
14383it [02:12, 83.70it/s]
14396it [02:12, 89.83it/s]
14408it [02:12, 95.80it/s]
14419it [02:12, 98.37it/s]
14430it [02:13, 98.29it/s]
14443it [02:13, 98.39it/s]
14461it [02:13, 112.86it/s]
14474it [02:13, 104.78it/s]
14486it [02:13, 89.32it/s]
14496it [02:13, 85.01it/s]
14511it [02:13, 96.99it/s]
14523it [02:13, 102.12it/s]
14535it [02:14, 104.16it/s]
14550it [02:14, 114.39it/s]
14563it [02:14, 105.66it/s]
14575it [02:14, 108.47it/s]
14588it [02:14, 107.84it/s]
14602it [02:14, 115.15it/s]
14614it [02:14, 115.97it/s]
14626it [02:14, 110.80it/s]
14638it [02:14, 112.55it/s]
14650it [02:15, 108.07it/s]
14661it [02:15, 102.21it/s]
14675it [02:15, 109.61it/s]
14689it [02:15, 116.64it/s]
14701it [02:15, 110.67it/s]
14716it [02:15, 118.85it/s]
14729it [02:15, 110.87it/s]
14741it [02:15, 112.24it/s]
14753it [02:15, 110.46it/s]
14765it [02:16, 112.87it/s]
14777it [02:16, 110.58it/s]
14794it [02:16, 122.91it/s]
14807it [02:16, 122.19it/s]
14822it [02:16, 129.33it/s]
14836it [02:16, 127.11it/s]
14849it [02:16, 118.87it/s]
14866it [02:16, 127.34it/s]
14880it [02:16, 115.87it/s]
14893it [02:17, 117.55it/s]
14906it [02:17, 112.71it/s]
14919it [02:17, 116.14it/s]
14934it [02:17, 123.04it/s]
14948it [02:17, 123.19it/s]
14961it [02:17, 114.67it/s]
14973it [02:17, 111.30it/s]
14991it [02:17, 123.77it/s]
15004it [02:18, 104.33it/s]
15019it [02:18, 114.61it/s]
15032it [02:18, 118.51it/s]
15051it [02:18, 132.55it/s]
15066it [02:18, 122.79it/s]
15080it [02:18, 126.25it/s]
15094it [02:18, 122.49it/s]
15107it [02:18, 111.94it/s]
15119it [02:19, 105.35it/s]
15130it [02:19, 98.21it/s]
15141it [02:19, 92.57it/s]
15154it [02:19, 100.32it/s]
15165it [02:19, 100.85it/s]
15176it [02:19, 92.08it/s]
15186it [02:19, 93.17it/s]
15196it [02:19, 76.03it/s]
15205it [02:20, 76.98it/s]
15214it [02:20, 73.32it/s]
15226it [02:20, 82.52it/s]
15238it [02:20, 86.18it/s]
15248it [02:20, 89.36it/s]
15258it [02:20, 85.68it/s]
15268it [02:20, 86.89it/s]
15278it [02:20, 87.62it/s]
15293it [02:20, 98.01it/s]
15308it [02:21, 106.43it/s]
15321it [02:21, 111.79it/s]
15334it [02:21, 113.89it/s]
15346it [02:21, 96.12it/s]
15360it [02:21, 105.88it/s]
15372it [02:21, 101.21it/s]
15386it [02:21, 107.80it/s]
15399it [02:21, 107.40it/s]
15415it [02:22, 117.67it/s]
15431it [02:22, 125.71it/s]
15445it [02:22, 117.02it/s]
15462it [02:22, 128.73it/s]
15476it [02:22, 104.00it/s]
15488it [02:22, 104.50it/s]
15503it [02:22, 111.52it/s]
15515it [02:22, 111.72it/s]
15529it [02:23, 117.95it/s]
15542it [02:23, 113.86it/s]
15554it [02:23, 108.02it/s]
15566it [02:23, 109.04it/s]
15581it [02:23, 118.21it/s]
15594it [02:23, 118.36it/s]
15607it [02:23, 108.96it/s]
15619it [02:23, 111.43it/s]
15631it [02:23, 103.91it/s]
15642it [02:24, 105.54it/s]
15654it [02:24, 107.39it/s]
15666it [02:24, 107.26it/s]
15683it [02:24, 120.28it/s]
15696it [02:24, 122.57it/s]
15709it [02:24, 108.03it/s]
15723it [02:24, 115.72it/s]
15736it [02:24, 112.60it/s]
15748it [02:24, 108.64it/s]
15762it [02:25, 115.20it/s]
15779it [02:25, 125.52it/s]
15797it [02:25, 136.82it/s]
15812it [02:25, 136.77it/s]
15827it [02:25, 137.11it/s]
15842it [02:25, 132.67it/s]
15856it [02:25, 116.75it/s]
15873it [02:25, 128.84it/s]
15887it [02:26, 117.60it/s]
15900it [02:26, 115.65it/s]
15915it [02:26, 122.95it/s]
15928it [02:26, 111.97it/s]
15946it [02:26, 124.78it/s]
15960it [02:26, 113.66it/s]
15973it [02:26, 116.20it/s]
15986it [02:26, 119.55it/s]
16002it [02:26, 127.25it/s]
16016it [02:27, 127.03it/s]
16030it [02:27, 128.15it/s]
16044it [02:27, 112.69it/s]
16056it [02:27, 112.80it/s]
16068it [02:27, 95.34it/s]
16081it [02:27, 99.43it/s]
16092it [02:27, 96.80it/s]
16103it [02:27, 94.03it/s]
16113it [02:28, 93.77it/s]
16127it [02:28, 97.37it/s]
16137it [02:28, 81.86it/s]
16148it [02:28, 87.14it/s]
16158it [02:28, 88.08it/s]
16170it [02:28, 94.46it/s]
16180it [02:28, 94.42it/s]
16194it [02:28, 102.26it/s]
16205it [02:29, 100.04it/s]
16216it [02:29, 101.31it/s]
16227it [02:29, 103.27it/s]
16241it [02:29, 112.07it/s]
16257it [02:29, 119.55it/s]
16270it [02:29, 111.23it/s]
16286it [02:29, 120.99it/s]
16300it [02:29, 123.83it/s]
16317it [02:29, 133.26it/s]
16331it [02:30, 129.17it/s]
16345it [02:30, 131.20it/s]
16359it [02:30, 118.92it/s]
16372it [02:30, 120.25it/s]
16388it [02:30, 128.89it/s]
16402it [02:30, 105.60it/s]
16414it [02:30, 103.09it/s]
16430it [02:30, 113.86it/s]
16445it [02:31, 117.54it/s]
16460it [02:31, 124.86it/s]
16474it [02:31, 119.32it/s]
16488it [02:31, 124.66it/s]
16503it [02:31, 130.28it/s]
16517it [02:31, 118.56it/s]
16530it [02:31, 116.23it/s]
16544it [02:31, 119.73it/s]
16557it [02:31, 113.27it/s]
16569it [02:32, 109.65it/s]
16581it [02:32, 104.87it/s]
16594it [02:32, 108.59it/s]
16609it [02:32, 117.06it/s]
16624it [02:32, 125.19it/s]
16637it [02:32, 112.08it/s]
16649it [02:32, 108.48it/s]
16663it [02:32, 116.19it/s]
16676it [02:32, 114.96it/s]
16688it [02:33, 115.36it/s]
16702it [02:33, 121.38it/s]
16715it [02:33, 110.83it/s]
16727it [02:33, 108.80it/s]
16740it [02:33, 112.97it/s]
16752it [02:33, 110.56it/s]
16764it [02:33, 104.96it/s]
16779it [02:33, 113.20it/s]
16791it [02:34, 112.62it/s]
16804it [02:34, 111.20it/s]
16819it [02:34, 119.60it/s]
16834it [02:34, 126.79it/s]
16849it [02:34, 128.98it/s]
16863it [02:34, 126.14it/s]
16881it [02:34, 133.03it/s]
16897it [02:34, 136.68it/s]
16911it [02:34, 133.34it/s]
16925it [02:35, 128.28it/s]
16938it [02:35, 127.25it/s]
16955it [02:35, 134.97it/s]
16969it [02:35, 123.62it/s]
16982it [02:35, 123.73it/s]
16995it [02:35, 123.57it/s]
17008it [02:35, 123.42it/s]
17021it [02:35, 110.59it/s]
17035it [02:35, 116.30it/s]
17048it [02:36, 119.02it/s]
17061it [02:36, 112.57it/s]
17073it [02:36, 104.62it/s]
17085it [02:36, 108.19it/s]
17097it [02:36, 101.39it/s]
17108it [02:36, 102.70it/s]
17121it [02:36, 105.65it/s]
17134it [02:36, 111.17it/s]
17150it [02:36, 122.36it/s]
17166it [02:37, 128.77it/s]
17184it [02:37, 139.53it/s]
17199it [02:37, 140.45it/s]
17214it [02:37, 133.72it/s]
17228it [02:37, 134.16it/s]
17242it [02:37, 126.37it/s]
17255it [02:37, 112.43it/s]
17267it [02:37, 102.29it/s]
17278it [02:38, 101.22it/s]
17289it [02:38, 91.95it/s]
17299it [02:38, 91.64it/s]
17310it [02:38, 92.52it/s]
17320it [02:38, 87.17it/s]
17331it [02:38, 89.83it/s]
17341it [02:38, 86.47it/s]
17350it [02:38, 86.71it/s]
17359it [02:38, 82.73it/s]
17368it [02:39, 71.06it/s]
17376it [02:39, 70.85it/s]
17386it [02:39, 77.33it/s]
17398it [02:39, 85.97it/s]
17408it [02:39, 86.74it/s]
17418it [02:39, 85.43it/s]
17431it [02:39, 94.92it/s]
17442it [02:39, 97.07it/s]
17455it [02:40, 104.54it/s]
17466it [02:40, 103.68it/s]
17477it [02:40, 102.98it/s]
17489it [02:40, 106.87it/s]
17501it [02:40, 106.70it/s]
17512it [02:40, 95.70it/s]
17528it [02:40, 104.98it/s]
17539it [02:40, 101.99it/s]
17552it [02:40, 108.38it/s]
17564it [02:41, 104.49it/s]
17579it [02:41, 110.78it/s]
17591it [02:41, 109.36it/s]
17603it [02:41, 100.53it/s]
17614it [02:41, 96.99it/s]
17624it [02:41, 92.40it/s]
17634it [02:41, 92.33it/s]
17649it [02:41, 104.34it/s]
17663it [02:41, 112.51it/s]
17676it [02:42, 116.82it/s]
17689it [02:42, 109.10it/s]
17701it [02:42, 112.01it/s]
17713it [02:42, 111.72it/s]
17725it [02:42, 105.50it/s]
17736it [02:42, 98.26it/s]
17747it [02:42, 98.78it/s]
17758it [02:42, 92.37it/s]
17769it [02:43, 95.77it/s]
17785it [02:43, 106.82it/s]
17797it [02:43, 98.60it/s]
17808it [02:43, 95.89it/s]
17818it [02:43, 89.40it/s]
17828it [02:43, 80.86it/s]
17841it [02:43, 90.20it/s]
17855it [02:43, 96.68it/s]
17869it [02:44, 103.61it/s]
17884it [02:44, 113.80it/s]
17898it [02:44, 119.68it/s]
17911it [02:44, 113.62it/s]
17923it [02:44, 113.20it/s]
17940it [02:44, 125.37it/s]
17954it [02:44, 127.92it/s]
17973it [02:44, 141.18it/s]
17988it [02:44, 142.39it/s]
18006it [02:45, 144.56it/s]
18021it [02:45, 144.31it/s]
18038it [02:45, 149.75it/s]
18054it [02:45, 139.18it/s]
18069it [02:45, 127.16it/s]
18083it [02:45, 109.63it/s]
18097it [02:45, 116.42it/s]
18111it [02:45, 120.78it/s]
18129it [02:45, 129.11it/s]
18143it [02:46, 128.89it/s]
18157it [02:46, 127.74it/s]
18174it [02:46, 136.27it/s]
18188it [02:46, 127.67it/s]
18202it [02:46, 126.20it/s]
18215it [02:46, 121.22it/s]
18228it [02:46, 115.61it/s]
18240it [02:46, 108.56it/s]
18255it [02:47, 113.87it/s]
18268it [02:47, 116.90it/s]
18280it [02:47, 115.97it/s]
18292it [02:47, 104.70it/s]
18304it [02:47, 101.98it/s]
18320it [02:47, 113.84it/s]
18332it [02:47, 106.36it/s]
18344it [02:47, 107.43it/s]
18356it [02:47, 109.60it/s]
18368it [02:48, 101.41it/s]
18379it [02:48, 100.69it/s]
18392it [02:48, 107.66it/s]
18404it [02:48, 110.99it/s]
18416it [02:48, 112.36it/s]
18428it [02:48, 103.51it/s]
18440it [02:48, 105.85it/s]
18451it [02:48, 103.79it/s]
18462it [02:49, 90.50it/s]
18475it [02:49, 99.11it/s]
18488it [02:49, 105.85it/s]
18500it [02:49, 91.27it/s]
18510it [02:49, 93.53it/s]
18524it [02:49, 103.43it/s]
18536it [02:49, 98.06it/s]
18552it [02:49, 110.47it/s]
18564it [02:50, 93.46it/s]
18575it [02:50, 69.19it/s]
18588it [02:50, 80.10it/s]
18600it [02:50, 85.93it/s]
18613it [02:50, 92.73it/s]
18624it [02:50, 86.07it/s]
18639it [02:50, 96.33it/s]
18653it [02:50, 105.66it/s]
18668it [02:51, 115.61it/s]
18681it [02:51, 115.16it/s]
18698it [02:51, 126.36it/s]
18712it [02:51, 129.85it/s]
18731it [02:51, 142.19it/s]
18747it [02:51, 145.43it/s]
18763it [02:51, 143.32it/s]
18778it [02:51, 140.62it/s]
18793it [02:51, 137.75it/s]
18808it [02:52, 140.47it/s]
18823it [02:52, 134.07it/s]
18837it [02:52, 124.26it/s]
18850it [02:52, 121.09it/s]
18868it [02:52, 131.20it/s]
18882it [02:52, 121.43it/s]
18897it [02:52, 126.96it/s]
18911it [02:52, 120.87it/s]
18925it [02:52, 125.18it/s]
18942it [02:53, 135.51it/s]
18958it [02:53, 141.06it/s]
18974it [02:53, 143.58it/s]
18992it [02:53, 152.82it/s]
19008it [02:53, 147.84it/s]
19024it [02:53, 139.95it/s]
19039it [02:53, 130.84it/s]
19053it [02:53, 126.77it/s]
19067it [02:54, 129.55it/s]
19081it [02:54, 119.22it/s]
19094it [02:54, 119.09it/s]
19108it [02:54, 118.71it/s]
19130it [02:54, 137.39it/s]
19145it [02:54, 134.79it/s]
19160it [02:54, 124.85it/s]
19177it [02:54, 135.38it/s]
19195it [02:54, 145.87it/s]
19211it [02:55, 136.34it/s]
19226it [02:55, 134.76it/s]
19240it [02:55, 125.69it/s]
19254it [02:55, 125.90it/s]
19270it [02:55, 129.09it/s]
19287it [02:55, 134.28it/s]
19301it [02:55, 128.32it/s]
19318it [02:55, 137.15it/s]
19333it [02:56, 126.42it/s]
19347it [02:56, 119.94it/s]
19361it [02:56, 124.08it/s]
19374it [02:56, 116.44it/s]
19386it [02:56, 105.92it/s]
19398it [02:56, 109.46it/s]
19410it [02:56, 94.35it/s]
19424it [02:56, 102.26it/s]
19436it [02:57, 102.03it/s]
19447it [02:57, 103.82it/s]
19458it [02:57, 94.98it/s]
19468it [02:57, 88.74it/s]
19478it [02:57, 82.68it/s]
19493it [02:57, 93.92it/s]
19507it [02:57, 102.64it/s]
19519it [02:57, 101.97it/s]
19530it [02:57, 99.60it/s]
19548it [02:58, 112.55it/s]
19563it [02:58, 120.76it/s]
19579it [02:58, 127.34it/s]
19594it [02:58, 131.92it/s]
19609it [02:58, 134.21it/s]
19623it [02:58, 130.32it/s]
19637it [02:58, 119.52it/s]
19650it [02:58, 116.73it/s]
19663it [02:58, 118.90it/s]
19676it [02:59, 114.95it/s]
19693it [02:59, 125.96it/s]
19707it [02:59, 114.53it/s]
19719it [02:59, 113.44it/s]
19731it [02:59, 111.61it/s]
19743it [02:59, 108.78it/s]
19761it [02:59, 121.83it/s]
19780it [02:59, 133.74it/s]
19795it [03:00, 132.65it/s]
19809it [03:00, 125.06it/s]
19824it [03:00, 126.86it/s]
19838it [03:00, 126.03it/s]
19853it [03:00, 128.18it/s]
19867it [03:00, 130.56it/s]
19883it [03:00, 137.53it/s]
19900it [03:00, 145.83it/s]
19916it [03:00, 149.48it/s]
19932it [03:01, 130.86it/s]
19946it [03:01, 118.88it/s]
19959it [03:01, 111.49it/s]
19976it [03:01, 123.77it/s]
19991it [03:01, 130.42it/s]
20005it [03:01, 115.86it/s]
20019it [03:01, 121.72it/s]
20032it [03:01, 115.73it/s]
20045it [03:02, 110.64it/s]
20057it [03:02, 108.50it/s]
20069it [03:02, 111.08it/s]
20081it [03:02, 111.51it/s]
20094it [03:02, 113.46it/s]
20106it [03:02, 109.89it/s]
20121it [03:02, 119.23it/s]
20134it [03:02, 111.46it/s]
20147it [03:02, 115.60it/s]
20163it [03:03, 122.50it/s]
20176it [03:03, 124.40it/s]
20190it [03:03, 127.66it/s]
20204it [03:03, 128.11it/s]
20217it [03:03, 127.62it/s]
20230it [03:03, 127.32it/s]
20244it [03:03, 127.42it/s]
20257it [03:03, 125.21it/s]
20270it [03:03, 119.89it/s]
20289it [03:04, 134.74it/s]
20304it [03:04, 136.98it/s]
20319it [03:04, 135.79it/s]
20333it [03:04, 132.28it/s]
20347it [03:04, 133.12it/s]
20361it [03:04, 133.87it/s]
20375it [03:04, 134.36it/s]
20389it [03:04, 129.02it/s]
20405it [03:04, 136.29it/s]
20420it [03:04, 134.26it/s]
20434it [03:05, 111.87it/s]
20446it [03:05, 106.40it/s]
20458it [03:05, 108.21it/s]
20471it [03:07, 109.34it/s]
In [205]:
beers.head().columns
Out[205]:
Index([u'index', u'abv', u'availability', u'ba_score', u'beer_style',
u'brewery_loation', u'brewery_name', u'brewery_website', u'for_trade',
u'gots', u'name', u'num_ratings', u'num_reviews', u'pdev', u'ravg',
u'reviews', u'soup', u'style_url', u'url', u'wants', u'cmpX', u'cmpY'],
dtype='object')
In [219]:
doc= documents[10260]
vec_bow = dictionary.doc2bow(doc.lower().split())
result = lsi_2[vec_bow]
print result
print result
[]
[]
In [175]:
documents[10260]
Out[175]:
''
In [208]:
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
------------------------------------------------------------
ImportError Traceback (most recent call last)
<ipython-input-208-7e1f42c847b7> in <module>()
1 import matplotlib.pyplot as plt
2 get_ipython().magic(u'matplotlib inline')
----> 3 import seaborn as sns
ImportError: No module named seaborn
In [283]:
beers_sample = beers[beers.num_reviews >= 500]
In [284]:
groups = beers_sample.groupby('beer_style')
# Plot
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for name, group in groups:
ax.plot(group.cmpX, group.cmpY, marker='o', linestyle='', ms=12, label=name)
----------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-284-c4435295c861> in <module>()
5 ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
6 for name, group in groups:
----> 7 ax.plot(group.cmpX, group.cmpY, marker='o', linestyle='', ms=12, label=name)
/usr/local/lib/python2.7/site-packages/pandas/core/generic.pyc in __getattr__(self, name)
2670 if name in self._info_axis:
2671 return self[name]
-> 2672 return object.__getattribute__(self, name)
2673
2674 def __setattr__(self, name, value):
AttributeError: 'DataFrame' object has no attribute 'cmpX'
In [231]:
beers_sample.sort_values('cmpY',ascending = False)
Out[231]:
index
abv
availability
ba_score
beer_style
brewery_loation
brewery_name
brewery_website
for_trade
gots
...
num_reviews
pdev
ravg
reviews
soup
style_url
url
wants
cmpX
cmpY
13542
3621
7.50
Year-round
85
Oatmeal Stout
Pennsylvania
Tröegs Brewing Company
http://www.troegs.com
4
401
...
675
21.64
3.79
[ Had this on tap at Troegs' tasting room. S -...
NaN
/beer/style/69/
/beer/profile/694/52128/
74
112.243189
107.155385
15881
5740
5.00
Year-round
84
English India Pale Ale (IPA)
United Kingdom (England)
Samuel Smith Old Brewery (Tadcaster)
0
172
...
922
17.79
3.71
[ 330ml bottle poured into a 350ml beer glass....
NaN
/beer/style/150/
/beer/profile/113/573/
39
118.545731
86.644243
4976
14338
5.30
Year-round
87
American Porter
Oregon
Rogue Ales
http://www.rogue.com
3
361
...
1352
16.80
3.87
[ Dark brown. Smells of roasted coffee and mal...
NaN
/beer/style/159/
/beer/profile/132/353/
118
118.123761
85.345787
17822
7460
10.00
Year-round
87
Tripel
Belgium
Brouwerij Duvel Moortgat NV
0
276
...
692
17.53
3.88
[ L: deep copper color, clear , decent amount ...
NaN
/beer/style/58/
/beer/profile/222/2566/
66
102.182062
84.047321
3119
12703
10.00
Year-round
98
Quadrupel (Quad)
Belgium
Brouwerij St. Bernardus NV
48
2349
...
2718
17.42
4.42
[ A - Chestnut brown pour, thick toffee colore...
NaN
/beer/style/142/
/beer/profile/259/1708/
729
126.991106
83.353382
14596
4450
7.20
Year-round
92
American Brown Ale
Delaware
Dogfish Head Craft Brewery
http://www.dogfish.com
6
1098
...
2018
18.54
4.10
[ I normally HATE brown ales, but was pleasant...
NaN
/beer/style/73/
/beer/profile/64/1161/
335
97.728504
81.332576
5330
14693
9.50
Fall
93
American Double / Imperial Stout
Wisconsin
Central Waters Brewing Co.
http://www.centralwaters.com
93
792
...
645
17.18
4.19
[ The look is dark with minimal head upon pour...
NaN
/beer/style/157/
/beer/profile/652/16062/
427
104.534654
80.833654
8210
17356
5.00
Year-round
67
German Pilsener
Germany
Brauerei Beck & Co.
0
375
...
681
40.14
2.84
[ Coors Light. The taste is non existant. I do...
NaN
/beer/style/41/
/beer/profile/32/2435/
17
100.391768
79.954784
1045
10850
7.00
Year-round
95
American IPA
California
Ballast Point Brewing Company
http://www.ballastpoint.com
25
2591
...
775
24.24
4.29
[ This is an exceptional beer especially on a ...
NaN
/beer/style/116/
/beer/profile/199/89174/
525
91.965053
79.857662
13177
3255
4.80
Year-round
79
German Pilsener
Germany
Bitburger Brauerei
0
258
...
788
23.85
3.48
[ very light. lots of head. not terrible looki...
NaN
/beer/style/41/
/beer/profile/613/1641/
35
93.540184
79.701838
18425
8066
6.70
Fall
88
Winter Warmer
Oregon
Deschutes Brewery
http://www.deschutesbrewery.com
3
451
...
892
11.93
3.94
[ Nicely crafted winter ale, pours dark brown ...
NaN
/beer/style/47/
/beer/profile/63/2178/
158
105.804257
79.024126
11655
1956
4.20
Year-round
74
Fruit / Vegetable Beer
Louisiana
Abita Brewing Co.
http://www.abita.com
1
748
...
774
42.01
3.19
[ 12 Fl oz bottle - $9.50 locally for 6Pours a...
NaN
/beer/style/9/
/beer/profile/3/7/
105
104.892302
76.808379
12153
2226
4.80
Year-round
78
German Pilsener
Germany
Warsteiner Brauerei
0
320
...
859
23.03
3.43
[ Nice golden pilsner with a good white foamy ...
NaN
/beer/style/41/
/beer/profile/360/935/
52
105.009328
74.455486
9361
18282
7.00
Year-round
93
Dubbel
Belgium
Brouwerij Westmalle
2
456
...
1188
15.66
4.15
[ This legendary dubbel pours an opaque, dark ...
NaN
/beer/style/57/
/beer/profile/208/674/
197
107.736733
73.888984
6630
1509
16.80
Winter
92
American Double / Imperial Stout
Colorado
Avery Brewing Company
http://www.averybrewing.com
50
821
...
871
19.90
4.12
[ Black as night with a fingernail of creamy d...
NaN
/beer/style/157/
/beer/profile/30/28204/
334
107.104583
72.135119
16762
6625
9.30
Spring
92
American Barleywine
Pennsylvania
Tröegs Brewing Company
http://www.troegs.com
10
240
...
568
15.90
4.15
[ This brew is 6 years old. Time for its revea...
NaN
/beer/style/19/
/beer/profile/694/48224/
184
111.219330
70.862065
6011
15377
6.75
Rotating
95
American Wild Ale
California
Russian River Brewing Company
http://www.rrbeer.com
58
857
...
618
18.60
4.30
[ Pours a hazy opaque golden straw color. Thin...
NaN
/beer/style/171/
/beer/profile/863/20518/
1176
116.192254
70.635588
6468
15836
6.20
Year-round
87
American IPA
California
Lagunitas Brewing Company
http://www.lagunitas.com
3
2743
...
1720
25.13
3.86
[ On draft, pours to a pleasing clear golden t...
NaN
/beer/style/116/
/beer/profile/220/916/
186
111.908199
70.600358
5667
15032
9.50
Year-round
91
American Double / Imperial IPA
New York
Southern Tier Brewing Company
http://www.southerntierbrewing.com
2
439
...
1216
18.18
4.07
[ From a 12 oz bottle.Deep amber body topped b...
NaN
/beer/style/140/
/beer/profile/3818/28577/
148
100.235378
70.115739
8055
17200
6.75
Year-round
85
American Amber / Red Ale
California
Lagunitas Brewing Company
http://www.lagunitas.com
0
433
...
877
20.16
3.77
[ Look- pours with a copper hue and 1 finger h...
NaN
/beer/style/128/
/beer/profile/220/3711/
69
97.533396
68.741130
17095
6730
5.80
Year-round
91
Oatmeal Stout
California
Anderson Valley Brewing Company
http://www.avbc.com
2
343
...
971
18.52
4.05
[ Maybe I got a bad bottle?Look: Dark Brown. M...
NaN
/beer/style/69/
/beer/profile/193/615/
157
101.742909
67.073705
8217
17363
4.60
Year-round
63
American Adjunct Lager
Missouri
Latrobe Brewing Co.
http://www.rollingrock.com
1
499
...
796
26.52
2.64
[ My new favorite american adjunct lager, it b...
NaN
/beer/style/38/
/beer/profile/174/567/
29
93.721517
66.560426
2261
11841
5.60
Year-round
92
American Porter
California
Anchor Brewing Company
http://www.anchorbrewing.com
5
453
...
1516
17.32
4.10
[ Type: 12-oz. bottle Glass: Clear 14.75-oz. p...
NaN
/beer/style/159/
/beer/profile/28/61/
199
93.708287
66.461029
13120
3197
8.40
Year-round
94
Tripel
Belgium
Brouwerij Bosteels
5
858
...
1288
17.92
4.24
[ Thick cloudy golden color with dense stormin...
NaN
/beer/style/58/
/beer/profile/202/656/
289
91.695503
65.277817
10368
19293
7.00
Year-round
90
Dubbel
Colorado
New Belgium Brewing
http://www.newbelgium.com
1
313
...
758
12.19
4.02
[ poured from a 12oz bottle into a tulip. best...
NaN
/beer/style/57/
/beer/profile/192/1912/
200
102.902937
65.209808
15438
5296
7.60
Year-round
90
Belgian Strong Pale Ale
California
North Coast Brewing Co.
http://www.northcoastbrewing.com
2
567
...
1207
19.50
4.00
[ Look: Golden, cloudy, looks somewhat like h...
NaN
/beer/style/55/
/beer/profile/112/411/
150
94.432179
64.422019
17733
7371
5.00
Year-round
86
Dunkelweizen
Germany
Spaten-Franziskaner-Bräu
0
220
...
813
17.59
3.81
[ 500ml bottle into a tall weizen glass. Paid ...
NaN
/beer/style/91/
/beer/profile/142/924/
71
93.203161
63.830383
7676
16820
7.00
Winter
81
American Stout
Michigan
Bell's Brewery, Inc.
http://www.bellsbeer.com
9
300
...
1011
25.28
3.56
[ It's juice with beer added - not the other w...
NaN
/beer/style/158/
/beer/profile/287/2511/
106
100.414230
63.778396
4908
14270
5.50
Year-round
88
English Brown Ale
Florida
Cigar City Brewing
http://www.cigarcitybrewing.com
5
281
...
613
20.81
3.94
[ Tasty Brown Ale. Pours a dense brown color i...
NaN
/beer/style/74/
/beer/profile/17981/47731/
168
95.431676
63.272389
6729
1608
12.00
Rotating
90
Quadrupel (Quad)
Pennsylvania
Victory Brewing Company - Downingtown
http://www.victorybeer.com
4
227
...
619
12.44
4.02
[ It was on draft at a local bar for 6$! 12% B...
NaN
/beer/style/142/
/beer/profile/345/8998/
104
94.272370
62.831772
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1020
10825
5.10
Year-round
84
American Brown Ale
Montana
Big Sky Brewing Company
http://www.bigskybrew.com
4
439
...
889
22.43
3.70
[ Brown Buick brown lacing on glass solid tast...
NaN
/beer/style/73/
/beer/profile/751/2296/
120
159.062729
-65.526551
11367
20297
4.20
Year-round
47
Light Lager
Missouri
Anheuser-Busch
http://www.anheuser-busch.com
0
435
...
588
76.09
1.84
[ Pours that straw yellow-ish color that nobod...
NaN
/beer/style/39/
/beer/profile/29/3734/
15
94.140608
-66.572062
16097
5957
7.00
Year-round
93
Russian Imperial Stout
United Kingdom (England)
Samuel Smith Old Brewery (Tadcaster)
3
478
...
1737
16.55
4.17
[ 355ml bottle. Can’t decipher the code date. ...
NaN
/beer/style/84/
/beer/profile/113/782/
224
110.983053
-67.512511
10767
19694
10.00
Rotating
88
Witbier
Delaware
Dogfish Head Craft Brewery
http://www.dogfish.com
6
278
...
694
21.03
3.90
[ Appearance: Hazy reddish orange in color, wi...
NaN
/beer/style/48/
/beer/profile/64/32435/
131
188.854197
-74.390256
4550
13910
9.70
Rotating
89
American Double / Imperial IPA
New Hampshire
Smuttynose Brewing Company
http://www.smuttynose.com
0
157
...
892
10.80
3.98
[ From the bottle, it pours a hazy amber with ...
NaN
/beer/style/140/
/beer/profile/141/4394/
105
118.473095
-74.840092
14145
4227
5.60
Year-round
82
English Brown Ale
Louisiana
Abita Brewing Co.
http://www.abita.com
2
430
...
1000
23.08
3.64
[ from a bottle into a pint glass. Pour is a d...
NaN
/beer/style/74/
/beer/profile/3/6/
105
115.232189
-75.796942
3155
12739
7.40
Winter
94
Doppelbock
Germany
Bayerische Staatsbrauerei Weihenstephan
0
282
...
1196
9.05
4.20
[ 500 ml bottle into a pilsner glass.Pours a d...
NaN
/beer/style/35/
/beer/profile/252/779/
208
131.701020
-77.539278
18801
8443
9.40
Rotating
95
Russian Imperial Stout
Ohio
Hoppin' Frog Brewery
http://www.hoppinfrog.com/
73
699
...
609
8.45
4.26
[ This one was really surprising. I didn't thi...
NaN
/beer/style/84/
/beer/profile/14879/47695/
285
169.469237
-79.690748
16733
6596
11.00
Rotating
95
American Strong Ale
California
Arrogant Bastard Brewing Co.
http://www.arrogantbastard.com/
41
1358
...
2096
19.29
4.25
[ On tap at Craft & Draft Amsterdam. Dark ruby...
NaN
/beer/style/78/
/beer/profile/43153/1056/
497
109.064420
-80.580973
7229
16371
5.15
Rotating
90
Belgian Pale Ale
California
Russian River Brewing Company
http://www.rrbeer.com
14
338
...
561
10.86
4.05
[ Found this in the cellar. Evidently I've le...
NaN
/beer/style/54/
/beer/profile/863/13741/
307
142.376582
-81.517435
664
10467
6.70
Year-round
96
Doppelbock
Germany
Privatbrauerei Franz Inselkammer KG / Brauerei...
20
910
...
2373
16.40
4.33
[ 11.2oz Bottle (Single)Often imitated, but ne...
NaN
/beer/style/35/
/beer/profile/39/131/
516
139.322609
-83.089180
18323
7963
5.50
Spring
82
Fruit / Vegetable Beer
Quebec
Unibroue
http://www.unibroue.com
0
159
...
1002
21.49
3.63
[ Pours a clear golden with a big creamy white...
NaN
/beer/style/9/
/beer/profile/22/3523/
42
167.638472
-84.903336
17042
6677
6.30
Year-round
85
American Stout
Colorado
Avery Brewing Company
http://www.averybrewing.com
1
115
...
585
10.58
3.78
[ BOD 327/15. Pitch black pour. Normal head ...
NaN
/beer/style/158/
/beer/profile/30/1830/
42
129.581567
-85.071860
13520
3599
5.50
Year-round
87
American IPA
Oregon
BridgePort Brewing Co. / Brewpub
http://www.bridgeportbrew.com
1
126
...
533
17.10
3.86
[ While the appearance of the beer is yellow, ...
NaN
/beer/style/116/
/beer/profile/43/466/
40
176.189629
-87.673204
6957
16097
5.00
Year-round
65
Euro Pale Lager
Netherlands
Heineken Nederland B.V.
0
1211
...
1347
47.27
2.75
[ The beer pours with an average size head, an...
NaN
/beer/style/37/
/beer/profile/81/246/
30
168.299767
-89.568584
9841
18764
7.00
Rotating
97
American IPA
California
Alpine Beer Company
http://www.alpinebeerco.com
19
624
...
816
19.18
4.38
[ Pours cloudy orange color with bubbles cling...
NaN
/beer/style/116/
/beer/profile/3120/32286/
1374
114.251795
-92.728067
9982
18906
10.00
Rotating
96
Quadrupel (Quad)
Belgium
De Struise Brouwers
31
450
...
825
15.24
4.33
[ 2015 Edition. ABV: 10% Serving temperature 1...
NaN
/beer/style/142/
/beer/profile/15237/34306/
413
111.489486
-101.512115
3368
12953
10.00
Rotating
83
Fruit / Vegetable Beer
Delaware
Dogfish Head Craft Brewery
http://www.dogfish.com
10
286
...
522
15.49
3.68
[ Bottle from Berts. Definite fruitiness, frui...
NaN
/beer/style/9/
/beer/profile/64/32437/
121
171.098901
-102.087136
5229
14592
4.40
Year-round
84
German Pilsener
California
North Coast Brewing Co.
http://www.northcoastbrewing.com
0
302
...
686
20.59
3.74
[ 12 ounce bottle poured into a pint glassA: P...
NaN
/beer/style/41/
/beer/profile/112/409/
79
161.612247
-103.253132
1082
10887
6.50
Year-round
78
American IPA
Louisiana
Abita Brewing Co.
http://www.abita.com
0
200
...
558
29.45
3.43
[ Copper-bronze clear body, not much carbonati...
NaN
/beer/style/116/
/beer/profile/3/39390/
20
185.161369
-110.281850
20010
9427
7.50
Year-round
91
American IPA
California
Port Brewing
http://www.portbrewing.com
2
276
...
766
14.99
4.07
[ Pours a cloudy dark straw with almost two bi...
NaN
/beer/style/116/
/beer/profile/13839/33243/
127
188.572323
-111.307700
19488
853
6.50
Fall
90
American IPA
California
Port Brewing
http://www.portbrewing.com
0
72
...
520
10.37
4.05
[ Amazing hop aromas. Flavor is full of bitter...
NaN
/beer/style/116/
/beer/profile/13839/33467/
66
177.073150
-111.985177
3708
13294
6.80
Year-round
91
American IPA
Colorado
Ska Brewing Co.
http://www.skabrewing.com
8
479
...
789
19.12
4.08
[ Dark caramel color, with 30% opacity. Head s...
NaN
/beer/style/116/
/beer/profile/923/48243/
248
190.437865
-115.070731
10650
19577
10.60
Rotating
100
American Double / Imperial Stout
Michigan
Founders Brewing Company
http://www.foundersbrewing.com
9
779
...
978
18.14
4.63
[ 2014 on tap at engine room.A: jet black, nic...
NaN
/beer/style/157/
/beer/profile/1199/47658/
4384
178.253287
-138.350139
6832
15972
6.80
Year-round
91
American Amber / Red Ale
California
Bear Republic Brewing Co.
http://www.bearrepublic.com
3
263
...
1171
16.01
4.06
[ 12 ounce bottle into tulip glass, best befor...
NaN
/beer/style/128/
/beer/profile/610/1655/
169
193.415037
-156.522263
14655
4509
5.10
Year-round
90
Munich Helles Lager
Germany
Bayerische Staatsbrauerei Weihenstephan
0
334
...
869
12.66
4.03
[ Let's be honest, if you don't like this beer...
NaN
/beer/style/21/
/beer/profile/252/712/
182
217.704870
-189.201971
14489
432
5.40
Year-round
89
Hefeweizen
Germany
Weisses Bräuhaus G. Schneider & Sohn GmbH
0
230
...
808
15.62
3.97
[ Poured a cloudy copper into my Weizen glass....
NaN
/beer/style/89/
/beer/profile/72/3280/
51
224.132055
-196.292139
67
15639
8.72
Rotating
88
Belgian Strong Dark Ale
Colorado
Avery Brewing Company
http://www.averybrewing.com
11
250
...
730
15.31
3.92
[ Ruddy brownish color with a slightly tab hea...
<!DOCTYPE html>
<html class="Public NoJs Logge...
/beer/style/56/
/beer/profile/30/34877/
44
212.849862
-201.418191
5546
14910
10.20
Rotating
89
American Strong Ale
California
Sierra Nevada Brewing Co.
http://www.sierra-nevada.com
13
490
...
744
16.88
3.97
[ 2012 vintage. Dark and toasty in the taste, ...
NaN
/beer/style/78/
/beer/profile/140/54089/
156
211.202813
-203.362338
15398
5255
4.80
Year-round
85
Hefeweizen
Pennsylvania
Tröegs Brewing Company
http://www.troegs.com
1
334
...
637
22.43
3.79
[ Tröegs DreamWeaver Wheat | Tröegs Brewing Co...
NaN
/beer/style/89/
/beer/profile/694/18305/
63
NaN
NaN
720 rows × 22 columns
In [ ]:
Content source: WillNetsky/beer_recommender
Similar notebooks: