iter 0, loss [0.7930035, 0.6688112, 0.12419228]
iter 1, loss [0.76646155, 0.65543938, 0.11102219]
iter 2, loss [0.74093431, 0.64202869, 0.098905623]
iter 3, loss [0.71643472, 0.62858039, 0.087854303]
iter 4, loss [0.69295555, 0.61506307, 0.07789246]
iter 5, loss [0.67034507, 0.60136425, 0.068980798]
iter 6, loss [0.64856541, 0.58741742, 0.061147992]
iter 7, loss [0.62757778, 0.5731982, 0.054379579]
iter 8, loss [0.60718739, 0.5585736, 0.048613761]
iter 9, loss [0.58742744, 0.54355478, 0.043872669]
iter 10, loss [0.56836224, 0.52824682, 0.040115435]
iter 11, loss [0.55004305, 0.51266903, 0.037373994]
iter 12, loss [0.53240782, 0.49678394, 0.03562386]
iter 13, loss [0.51545459, 0.48067972, 0.03477487]
iter 14, loss [0.49929178, 0.46452326, 0.034768518]
iter 15, loss [0.48377475, 0.44834918, 0.03542557]
iter 16, loss [0.46883401, 0.43230259, 0.036531426]
iter 17, loss [0.45434791, 0.41647923, 0.03786869]
iter 18, loss [0.44018212, 0.40096614, 0.039215993]
iter 19, loss [0.42628002, 0.38592133, 0.040358685]
iter 20, loss [0.41253877, 0.37142134, 0.041117433]
iter 21, loss [0.39884496, 0.35749444, 0.041350529]
iter 22, loss [0.3853218, 0.34425077, 0.041071016]
iter 23, loss [0.37197554, 0.33165407, 0.040321466]
iter 24, loss [0.35880747, 0.31966352, 0.039143939]
iter 25, loss [0.34590849, 0.30829784, 0.037610643]
iter 26, loss [0.33333865, 0.29748777, 0.035850883]
iter 27, loss [0.3211816, 0.28717661, 0.034004986]
iter 28, loss [0.30961043, 0.27731606, 0.032294374]
iter 29, loss [0.29874796, 0.26794228, 0.03080567]
iter 30, loss [0.28844491, 0.25894216, 0.029502749]
iter 31, loss [0.27872223, 0.25028858, 0.028433653]
iter 32, loss [0.26952714, 0.2419851, 0.027542029]
iter 33, loss [0.26082036, 0.23403208, 0.026788281]
iter 34, loss [0.25260898, 0.22644468, 0.026164312]
iter 35, loss [0.24483666, 0.21920918, 0.025627486]
iter 36, loss [0.23749465, 0.21233457, 0.025160074]
iter 37, loss [0.23053022, 0.20580897, 0.024721254]
iter 38, loss [0.22397967, 0.19964896, 0.024330711]
iter 39, loss [0.21785715, 0.1938765, 0.023980645]
iter 40, loss [0.21222174, 0.18852958, 0.023692153]
iter 41, loss [0.20705956, 0.18357272, 0.02348684]
iter 42, loss [0.20229682, 0.17894803, 0.023348793]
iter 43, loss [0.1978818, 0.1746351, 0.023246707]
iter 44, loss [0.19372036, 0.17057943, 0.023140928]
iter 45, loss [0.18976082, 0.16677181, 0.022989009]
iter 46, loss [0.18597709, 0.16320448, 0.02277261]
iter 47, loss [0.18236941, 0.15983623, 0.022533173]
iter 48, loss [0.17895952, 0.15664375, 0.022315767]
iter 49, loss [0.17575885, 0.15360232, 0.022156538]
iter 50, loss [0.17274278, 0.15071318, 0.02202961]
iter 51, loss [0.16987324, 0.14800696, 0.021866273]
iter 52, loss [0.1671356, 0.14546052, 0.021675074]
iter 53, loss [0.16452262, 0.14305347, 0.021469152]
iter 54, loss [0.16200018, 0.14075579, 0.021244396]
iter 55, loss [0.15962316, 0.13859957, 0.021023586]
iter 56, loss [0.15735051, 0.13651544, 0.020835079]
iter 57, loss [0.15516919, 0.13449958, 0.020669617]
iter 58, loss [0.15302496, 0.13253942, 0.020485537]
iter 59, loss [0.15090796, 0.13062344, 0.020284515]
iter 60, loss [0.14887802, 0.12877713, 0.02010089]
iter 61, loss [0.14694329, 0.12698248, 0.019960808]
iter 62, loss [0.14506574, 0.12521507, 0.019850666]
iter 63, loss [0.14318264, 0.12347698, 0.019705648]
iter 64, loss [0.14129883, 0.12175814, 0.019540694]
iter 65, loss [0.13946418, 0.12006482, 0.019399365]
iter 66, loss [0.13770992, 0.11842936, 0.019280558]
iter 67, loss [0.13596937, 0.11683002, 0.019139346]
iter 68, loss [0.13425608, 0.11528559, 0.018970495]
iter 69, loss [0.13256112, 0.11374477, 0.018816337]
iter 70, loss [0.13089783, 0.11221021, 0.018687628]
iter 71, loss [0.12922314, 0.11068057, 0.018542578]
iter 72, loss [0.12753922, 0.10917205, 0.018367177]
iter 73, loss [0.12589739, 0.10768928, 0.018208103]
iter 74, loss [0.12428897, 0.10621422, 0.018074749]
iter 75, loss [0.12270307, 0.10475583, 0.017947232]
iter 76, loss [0.1211079, 0.10331487, 0.017793031]
iter 77, loss [0.11951388, 0.10186204, 0.017651841]
iter 78, loss [0.11791827, 0.10040064, 0.017517626]
iter 79, loss [0.11632953, 0.098957054, 0.017372474]
iter 80, loss [0.11474298, 0.097529359, 0.017213618]
iter 81, loss [0.11319254, 0.096125275, 0.017067263]
iter 82, loss [0.11166993, 0.094747312, 0.016922614]
iter 83, loss [0.11016384, 0.093391262, 0.016772574]
iter 84, loss [0.10867363, 0.092052937, 0.016620699]
iter 85, loss [0.10719229, 0.090728231, 0.016464064]
iter 86, loss [0.10572492, 0.089418001, 0.016306924]
iter 87, loss [0.10426831, 0.088112757, 0.01615556]
iter 88, loss [0.10280727, 0.086805612, 0.016001659]
iter 89, loss [0.10135267, 0.085504808, 0.015847862]
iter 90, loss [0.099895298, 0.084209554, 0.015685746]
iter 91, loss [0.098445773, 0.08292257, 0.015523202]
iter 92, loss [0.09699513, 0.081640273, 0.015354853]
iter 93, loss [0.095583349, 0.080377899, 0.01520545]
iter 94, loss [0.094193637, 0.079131208, 0.015062425]
iter 95, loss [0.092801563, 0.07790219, 0.014899376]
iter 96, loss [0.091413245, 0.076694272, 0.014718972]
iter 97, loss [0.090046406, 0.075493947, 0.014552461]
iter 98, loss [0.088671573, 0.074288748, 0.014382825]
iter 99, loss [0.087281398, 0.073081255, 0.014200145]
(10, 4)