In [79]:
import numpy as np
import torch
In [131]:
yolo = 45
fastyolo = 155
faster_rcnn_vgg = 7
faster_rcnn_zf = 18
fast_rcnn = 0.5
In [138]:
(yolo / faster_rcnn_vgg + yolo / faster_rcnn_zf) / 2
Out[138]:
In [ ]:
In [90]:
inp = torch.Tensor(1,5,5,5).random_()
In [91]:
inp.shape
Out[91]:
In [92]:
inp
Out[92]:
In [95]:
inp = torch.autograd.Variable(inp)
In [101]:
convlayer = torch.nn.Conv2d(5,4,5)
In [102]:
convlayer(inp)
Out[102]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [25]:
In [76]:
# inp = torch.Tensor(10).random_()
# inp = torch.autograd.Variable(inp)
inp = torch.autograd.Variable(torch.Tensor(5,1,5,5).zero_())
convlayer = torch.nn.Conv2d(1,20,5)
out = convlayer(inp)
print(f'Input tensor dimensions: {inp.size()}')
print(f'Performing Convolution: {convlayer}')
print(f'Output tensor dimensions: {out.shape}')
In [77]:
inp[:1]
Out[77]:
In [78]:
out[0]
Out[78]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [1]:
import numpy as np
from scipy.spatial.distance import euclidean
In [5]:
# x1 y1 x2 y2
c1 = np.array([10, 10, 80, 80])
c2 = np.array([20, 20, 90, 90])
In [6]:
np.sqrt((c2[2]-c1[2])**2+(c2[0]-c1[0])**2
+(c2[3]-c1[3])**2+(c2[1]-c1[1])**2)
Out[6]:
In [7]:
euclidean(c1, c2)
Out[7]:
In [8]:
euclidean(c2, c1)
Out[8]:
In [ ]: