In [1]:
import numpy as np
import tensorflow as tf

In [4]:
a = np.array([1,2,3])

In [4]:
a


Out[4]:
array([1, 2, 3])

In [5]:
a.shape


Out[5]:
(3,)

In [7]:
b = np.array([[1,2,3],[4,5,6]])

In [8]:
b


Out[8]:
array([[1, 2, 3],
       [4, 5, 6]])

In [9]:
b.shape


Out[9]:
(2, 3)

In [10]:
a = np.zeros((2,2))

In [11]:
a


Out[11]:
array([[ 0.,  0.],
       [ 0.,  0.]])

In [12]:
b = np.ones((1,2))

In [13]:
b


Out[13]:
array([[ 1.,  1.]])

In [14]:
b.shape


Out[14]:
(1, 2)

In [15]:
b = np.array([1,1])

In [16]:
b


Out[16]:
array([1, 1])

In [17]:
b.shape


Out[17]:
(2,)

In [18]:
b = np.array([[1,1]])

In [19]:
b


Out[19]:
array([[1, 1]])

In [20]:
b.shape


Out[20]:
(1, 2)

In [21]:
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

In [22]:
a


Out[22]:
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]])

In [23]:
b = a[:2, 1:3] #righe 0 e 1, colonne 1 e 2

In [24]:
b


Out[24]:
array([[2, 3],
       [6, 7]])

In [25]:
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

In [26]:
row_r1 = a[1, :] #indexing reduces the rank

In [27]:
row_r1


Out[27]:
array([5, 6, 7, 8])

In [28]:
row_r2 = a[1:2, :] #slicing keep the same rank

In [29]:
row_r2


Out[29]:
array([[5, 6, 7, 8]])

In [34]:
col_r1 = a[:, 1] #second col

In [35]:
col_r1


Out[35]:
array([ 2,  6, 10])

In [36]:
col_r1.shape


Out[36]:
(3,)

In [38]:
col_r2 = a[:, 1:2]

In [39]:
col_r2


Out[39]:
array([[ 2],
       [ 6],
       [10]])

In [40]:
col_r2.shape


Out[40]:
(3, 1)

In [41]:
a = np.array([[1,2], [3, 4], [5, 6]])

In [42]:
a


Out[42]:
array([[1, 2],
       [3, 4],
       [5, 6]])

In [43]:
a.shape


Out[43]:
(3, 2)

In [47]:
print a[[0, 1, 2], [0, 1, 0]] #il primo set da' l'indice delle righe, il secondo delle colonne


[1 4 5]

In [50]:
x = np.array([[1,2],[3,4]], dtype=np.float64)

In [52]:
x.ndim


Out[52]:
2

In [53]:
a = np.array([0, 1, 2])

In [62]:
a


Out[62]:
array([0, 1, 2])

In [63]:
a.shape


Out[63]:
(3,)

In [64]:
a1 = np.tile(a, 2)

In [65]:
a1.shape


Out[65]:
(6,)

In [66]:
a2 = np.tile(a, (2, 2))

In [67]:
a2


Out[67]:
array([[0, 1, 2, 0, 1, 2],
       [0, 1, 2, 0, 1, 2]])

In [68]:
a2.shape


Out[68]:
(2, 6)

In [70]:
a.ndim


Out[70]:
1

In [71]:
a3 = np.tile(a, (2, 1, 2))

In [72]:
a3


Out[72]:
array([[[0, 1, 2, 0, 1, 2]],

       [[0, 1, 2, 0, 1, 2]]])

In [73]:
a3.ndim


Out[73]:
3

In [74]:
a3.shape


Out[74]:
(2, 1, 6)

In [78]:
b = np.array([[1, 2], [3, 4]])
b


Out[78]:
array([[1, 2],
       [3, 4]])

In [76]:
b.shape


Out[76]:
(2, 2)

In [79]:
b1 = np.tile(b, 2)

In [84]:
b1.shape


Out[84]:
(2, 4)

In [81]:
b2 = np.tile(b, (2, 1))

In [82]:
b2


Out[82]:
array([[1, 2],
       [3, 4],
       [1, 2],
       [3, 4]])

In [83]:
b2.shape


Out[83]:
(4, 2)

In [85]:
x = np.array([[[1],[2],[3]], [[4],[5],[6]]])

In [86]:
x


Out[86]:
array([[[1],
        [2],
        [3]],

       [[4],
        [5],
        [6]]])

In [87]:
x.shape


Out[87]:
(2, 3, 1)

In [5]:
x1 = np.array([[[1,2,3], [4,5,6]], [[1,2,3], [4,5,6]]])

In [6]:
x1


Out[6]:
array([[[1, 2, 3],
        [4, 5, 6]],

       [[1, 2, 3],
        [4, 5, 6]]])

In [7]:
x1.shape


Out[7]:
(2, 2, 3)

In [96]:
x1.ndim


Out[96]:
3

In [9]:
x1.shape[2]


Out[9]:
3

In [98]:
x1 = np.array([1, 2, 3, 4, 5])
x2 = np.array([5, 4, 3])

In [99]:
x1


Out[99]:
array([1, 2, 3, 4, 5])

In [100]:
x2


Out[100]:
array([5, 4, 3])

In [101]:
x1_new = x1[:, np.newaxis]

In [102]:
x1_new


Out[102]:
array([[1],
       [2],
       [3],
       [4],
       [5]])

In [104]:
x3 = x1_new + x2

In [106]:
x3


Out[106]:
array([[ 6,  5,  4],
       [ 7,  6,  5],
       [ 8,  7,  6],
       [ 9,  8,  7],
       [10,  9,  8]])

In [4]:
tf1 = tf.zeros([2, 3])

In [6]:
tf1.shape


Out[6]:
TensorShape([Dimension(2), Dimension(3)])

In [7]:
tf2 = tf.ones([2, 3,4])

In [8]:
tf2.shape


Out[8]:
TensorShape([Dimension(2), Dimension(3), Dimension(4)])

In [9]:
tf2


Out[9]:
<tf.Tensor 'ones:0' shape=(2, 3, 4) dtype=float32>

In [12]:
tf3 = tf.placeholder(tf.float32, shape=[None,3], name="train_inputs")

In [13]:
tf3


Out[13]:
<tf.Tensor 'train_inputs:0' shape=(?, 3) dtype=float32>

In [ ]: