In [2]:
import numpy as np
import tensorflow as tf

In [3]:
num_components = 2
num_latent = 2
num_inducing = 3

In [5]:
raw_covariance = tf.Variable(tf.zeros([num_components, 
                                       num_latent,
                                       num_inducing]))

In [12]:
tf.zeros([num_components, num_latent, num_inducing])


Out[12]:
<tf.Tensor 'zeros_1:0' shape=(2, 2, 3) dtype=float32>

In [17]:
covars_list = [None] * num_components

In [18]:
covars_list


Out[18]:
[None, None]

In [21]:
tri_vec_shape = [num_inducing*(num_inducing+1)/2]

In [23]:
init_vec = np.zeros([num_components, num_latent] +
                    tri_vec_shape,
                    dtype=np.float32)

In [24]:
init_vec


Out[24]:
array([[[ 0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.]],

       [[ 0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.]]], dtype=float32)

In [25]:
xrange(1,2)


Out[25]:
xrange(1, 2)

In [28]:
for i in xrange(1,3):
    print(i)


1
2

In [ ]: