In [2]:
import numpy as np
import tensorflow as tf
In [3]:
num_components = 2
num_latent = 2
num_inducing = 3
In [5]:
raw_covariance = tf.Variable(tf.zeros([num_components,
num_latent,
num_inducing]))
In [12]:
tf.zeros([num_components, num_latent, num_inducing])
Out[12]:
In [17]:
covars_list = [None] * num_components
In [18]:
covars_list
Out[18]:
In [21]:
tri_vec_shape = [num_inducing*(num_inducing+1)/2]
In [23]:
init_vec = np.zeros([num_components, num_latent] +
tri_vec_shape,
dtype=np.float32)
In [24]:
init_vec
Out[24]:
In [25]:
xrange(1,2)
Out[25]:
In [28]:
for i in xrange(1,3):
print(i)
In [ ]: