In [1]:
import numpy as np
from datascience import *

# These lines set up graphing capabilities.
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
import warnings
warnings.simplefilter('ignore', FutureWarning)

from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets

In [4]:
table1 = Table.read_table("map_data_CRC.csv")
table1


Out[4]:
state value
1 0.0569087
2 -0.14243
4 0.0538141
5 -0.08365
6 0.0671088
8 -0.0857514
9 -0.14042
10 0.116071
11 0.0597139
12 0.0505135

... (41 rows omitted)


In [17]:
table2 = Table.read_table("num_data_CRC.csv")
table2.where("group", "Seasonally Adjusted").plot("month", "num")



In [ ]:
table3 = Table.read_table("vol_data_CRC.csv")
table3.where("group", "Seasonally Adjusted").where("month", np.arange(84, 132)).plot(0, 1)

In [20]:
table4 = Table.read_table("yoy_data_all_CRC.csv")
table4


Out[20]:
month yoy group
72 0.0532397 Number of Loans
73 0.176887 Number of Loans
74 0.0495053 Number of Loans
75 0.0538333 Number of Loans
76 0.0965932 Number of Loans
77 0.0540308 Number of Loans
78 0.113789 Number of Loans
79 0.0383785 Number of Loans
80 0.094669 Number of Loans
81 0.0418354 Number of Loans

... (254 rows omitted)


In [ ]: