In [1]:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
from scipy.interpolate import griddata

Plotting contour plot of biased FES


In [7]:
%matplotlib inline 

# CHECK OUT README.TXT
# THIS CAME FROM 
#/gscratch/pfaendtner/kfleming/IL_project/Lipase/CPMD/uncatalyzed/MetaD_Rates/butanol/water/scratch/trial1/HILLS

fesdata = np.genfromtxt('fes.dat',comments='#');

dim1=100
dim2=100
fesdata = fesdata[:,0:3]
enertokcal=1/627.5095
#some post-processing to be compatible with contourf 
X=np.reshape(fesdata[:,0],[dim1,dim2],order="F")  #order F was 20% faster than A/C
Y=np.reshape(fesdata[:,1],[dim1,dim2],order="F") 
Z=np.reshape((fesdata[:,2]-np.min(fesdata[:,2]))/enertokcal,[dim1,dim2],order="F")  #convert to kcal/mol

#what spacing do you want?  
spacer=3
lines=100 #this goes to 80 kcal/mol (2*40)
levels=np.linspace(0,lines*spacer,num=(lines+1),endpoint=True)

fig=plt.figure(figsize=(10,8)) 
axes = fig.add_subplot(111)

plt.contourf(X, Y, Z, levels, cmap=plt.cm.bone,)
plt.colorbar()
plt.xlabel('$d1$')
plt.ylabel('$d2$')
#axes.set_ylim([.1,.5])
#axes.set_xlim([0.1,0.5])
plt.rcParams.update({'font.size': 12})
plt.show()



In [5]:
data=np.genfromtxt('HILLS')

# you can see the system ends around the 300th hill 

%matplotlib inline 
fig = plt.figure(figsize=(6,6))
fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=0.2)

axes = fig.add_subplot(111)
rangel=np.arange(0,np.size(data[:,1]))
axes.plot(rangel,data[:,1])
axes.set_xlim([0,1000])

plt.show()



In [6]:
#I ran sum hills on the 1st 300 hills
fesdata = np.genfromtxt('fes.1st900.dat',comments='#');
min=np.min(fesdata[:,2])
max=np.max(fesdata[:,2])

apparentbarrier=(max-min)/enertokcal
print apparentbarrier


132.892624436

In [ ]: